

C h a p t e r

8

Frameworks

�

Frameworks

�

Applets as a Simple Framework

�

The Collections Framework

�

A Graph Editor Framework

�

Enhancing the Graph Editor Framework

In Chapter 6, you saw how the inheritance mechanism can be used to
derive a new class that extends and customizes a given class. In this
chapter we will go beyond simple inheritance and turn to larger clusters of
classes, called

frameworks

, that collectively form the basis for customiza-
tion. We will study how to use frameworks to derive new classes or even
entire applications. Then we will turn to the design of a sample framework
and show how that framework forms the basis of the Violet UML editor.

C H A P T E R T O P I C S

OODP2_Ch08_4.fm Page 319 Monday, March 21, 2005 2:54 PM

320

CHAPTER 8

Frameworks

A

framework

 is a set of cooperating classes that implements the
mechanisms that are essential for a particular problem domain. A pro-
grammer can create new functionality in the problem domain by
extending framework classes. For example, Swing is a framework for
the problem domain of graphical user interface programming. A pro-
grammer can implement new GUI programs by forming subclasses of

JFrame

,

JComponent

, and so on.

Unlike a design pattern, a framework is not a general design rule. It consists of classes
that provide functionality in a particular domain. Typically, a framework uses multiple
patterns.

An

application framework

 consists of a set of classes that implements
services common to a certain type of application. To build an actual
application, the programmer subclasses some of the framework classes
and implements additional functionality that is specific to the applica-

tion that the programmer is building. Thus, the first characteristic of an application
framework is:

�

An application framework supplies a set of classes that an application programmer
augments to build an application, often by forming subclasses of framework
classes.

The programmer has little or no influence on the order in which the
methods of the programmer-supplied classes are called. The majority
of activity occurs in the framework, and eventually some objects of the
programmer-defined classes are constructed. Then the framework
calls their methods in the order that it deems appropriate. This phe-
nomenon is often called

inversion of control

.

�

In an application framework, the framework classes, and not the application-
specific classes, control the flow of execution.

It is the role of the framework to determine which methods to call at what time. Its
designers have expert knowledge about control flow. It is the job of the application pro-
grammer to override those methods to fulfill the application-specific tasks.

TIP

Designing a single class is an order of magnitude harder than designing a single method
because you must anticipate what other programmers will do with it. Similarly, designing a
framework is much harder than designing a class library or a single application because you
must anticipate what other programmers want to achieve. A good rule of thumb for validat-
ing the design of a framework is to use it to build at least three different applications.

8.1 Frameworks

A framework is a set of
classes and interface types
that structures the essential
mechanisms of a particular
domain.

An application framework is a
framework for creating appli-
cations of a particular type.

Inversion of control in a
framework signifies that the
framework classes, and not
the application classes, are
responsible for the control
flow in the application.

OODP2_Ch08_4.fm Page 320 Monday, March 21, 2005 2:54 PM

8.2

Applets as a Simple Framework

321

Java applets are Java programs that run inside a Web browser (see
Figure 1).

The

java.applet

 package is a simple application framework: It con-
tains superclasses to make applets, and the application programmer
adds classes and overrides methods to make an actual applet. The

main

 method is not supplied by the programmer of a specific applet.
The sequencing of the operations that the programmer supplies is
under the control of the framework.

To design an applet, you must write a class that extends the

Applet

 class. You must over-
ride some or all of the following methods:

�

init:

Called exactly once, when the applet is first loaded. Purpose: Initialize data
structures and add user interface elements.

�

start:

Called when the applet is first loaded and every time the user restores the
browser window containing the applet. Purpose: Start or restart animations or
other computationally intensive tasks.

8.2 Applets as a Simple Framework

An applet is a Java program
that runs inside a browser.

The applet package is a simple
framework that demonstrates
subclassing from framework
classes and inversion of
control.

F igure 1

An Applet

OODP2_Ch08_4.fm Page 321 Monday, March 21, 2005 2:54 PM

322

CHAPTER 8

Frameworks

�

stop:

 Called when the user leaves the browser window containing the applet, and
when the browser terminates. Purpose: Stop computationally intensive tasks when
the applet is not being viewed.

�

destroy:

 Called when the browser terminates. Purpose: Relinquish any resources
that were acquired during

init

 or other processing.

�

paint:

 Called when the applet window needs repainting. Purpose: Redraw the
window contents to reflect the current state of the applet data structures.

The sample applet at the end of this section is quite typical. The applet shows a scrolling
banner (see Figure 2). A Web designer can customize the applet by specifying different
messages, fonts, and delay timings. Here is a typical HTML file:

<applet code="BannerApplet.class" width="300" height="100">
<param name="message" value="Hello, World!"/>
<param name="fontname" value="Serif"/>
<param name="fontsize" value="64"/>
<param name="delay" value="10"/>
</applet>

The

init

 method reads these parameters with the

getParameter

 method. It then initial-
izes a

Font

 object and a timer. The timer moves the starting position of the string and
calls

repaint

 whenever the timer delay interval has lapsed.

The

start

 method starts the timer and the

stop

 method stops it. Thus, the message does
not scroll when the applet is not visible. You can verify this by minimizing the browser
window and restoring it again. The scrolling picks up where it left off when you mini-
mized the window.

Finally, the

paint

 method draws the string.

F igure 2

The Scrolling Banner Applet

OODP2_Ch08_4.fm Page 322 Monday, March 21, 2005 2:54 PM

8.2

Applets as a Simple Framework

323

You can see the typical characteristics of the framework in this example.

�

The applet programmer uses inheritance to extend the

Applet

 framework class to a
specific program.

�

The

Applet

 class deals with the behavior that is common to all applets: interaction
with the browser, parsing

param

 tags, determining when the applet is visible, and
so on. The applet programmer only fills in customized behavior for a particular
program.

�

Inversion of control means that the applet programmer is not concerned with the
overall flow of control, but only fills in handlers for initialization, starting, stop-
ping, and painting. When these methods are called is beyond the control of the
applet programmer.

Ch8/applet/BannerApplet.java

1

import java.applet.*;

2

import java.awt.*;

3

import java.awt.event.*;

4

import java.awt.font.*;

5

import java.awt.geom.*;

6

import javax.swing.*;

7
8

public class BannerApplet extends Applet

9

{

10

 public void init()

11

 {

12

 message = getParameter("message");

13

 String fontname = getParameter("fontname");

14

 int fontsize = Integer.parseInt(getParameter("fontsize"));

15

 delay = Integer.parseInt(getParameter("delay"));

16

 font = new Font(fontname, Font.PLAIN, fontsize);

17

 Graphics2D g2 = (Graphics2D) getGraphics();

18

 FontRenderContext context = g2.getFontRenderContext();

19

 bounds = font.getStringBounds(message, context);

20

21

 timer = new Timer(delay, new

22

 ActionListener()

23

 {

24

 public void actionPerformed(ActionEvent event)

25

 {

26

 start--;

27

 if (start + bounds.getWidth() < 0)

28

 start = getWidth();

29

 repaint();

30

 }

31

 });

32

 }

33
34

 public void start()

35

 {

36

 timer.start();
37 }
38

OODP2_Ch08_4.fm Page 323 Monday, March 21, 2005 2:54 PM

324 CHAPTER 8 Frameworks

39 public void stop()
40 {
41 timer.stop();
42 }
43
44 public void paint(Graphics g)
45 {
46 g.setFont(font);
47 g.drawString(message, start, (int) -bounds.getY());
48 }
49
50 private Timer timer;
51 private int start;
52 private int delay;
53 private String message;
54 private Font font;
55 private Rectangle2D bounds;
56 }

As you know, the Java library contains useful data structures such as
linked lists and hash tables. Most programmers are simply interested
in the collection library as a provider of common data structures.
However, the designers of these collection classes supplied more than
just a set of useful classes. They provided a framework that makes it

easy to add more collection classes in such a way that the new classes can interact with
existing collections. We will demonstrate this capability by adding the queue class of
Chapter 3 to the framework. We will then critically examine the collections framework.

A collection is a data structure that contains objects, which are called the elements of the
collection. The collections framework specifies a number of interface types for collections.
They include

� Collection: the most general collection interface type

� Set: an unordered collection that does not permit duplicate elements

� SortedSet: a set whose elements are visited in sorted order

� List: an ordered collection

The framework also supplies concrete classes that implement these interface types.
Among the most important classes are

� HashSet: a set implementation that uses hashing to locate the set elements

� TreeSet: a sorted set implementation that stores the elements in a balanced binary
tree

� LinkedList and ArrayList: two implementations of the List interface

These interface types and classes are shown in Figure 3.

8.3 The Collections Framework

The collections library is both a
repository of common data
structures and a framework for
new collection classes.

8.3.1 An Overview of the Collections Framework

OODP2_Ch08_4.fm Page 324 Monday, March 21, 2005 2:54 PM

8.3 The Collections Framework 325

All collection classes and interfaces are generic types; the type parameter denotes the
type of the collected elements.

NOTE The collections framework also defines a Map interface type and implementations
HashMap and TreeMap. A map associates one set of objects, called the keys, with another set of
objects, called the values. An example of such an association is the map of applet parameters
that associates parameter names with parameter values. However, the Map type is not a sub-
type of the Collection type. Programmers generally prefer to use methods that locate map
values from their keys. If a map was implemented as a collection, programmers would need to
work with a sequence of key/value pairs.
For simplicity, we will not consider maps in our discussion of the collections framework.

The two fundamental interface types of the collections framework are Collection and
Iterator. A collection is any class that can hold elements in some way. Individual collec-
tion classes may have different disciplines for storing and locating elements. For example,
a linked list keeps elements in the order in which they were inserted, whereas a sorted set
keeps them in ascending sort order. An iterator is a mechanism for visiting the elements
of the collection. We discussed iterators already in Chapters 1 and 3. Recall that the
Iterator<E> interface type has three methods:

boolean hasNext()
E next()
void remove()

The Collection<E> interface extends the Iterable<E> interface type. That interface type
has a single method

Iterator<E> iterator()

Figure 3

Collection Interface Types and Implementing Classes

«interface»
Collection

«interface»
List

«interface»
Set

«interface»
SortedSet

HashSet

TreeSet ArrayList LinkedList

8.3.2 The Collection and Iterator Interface Types

OODP2_Ch08_4.fm Page 325 Monday, March 21, 2005 2:54 PM

326 CHAPTER 8 Frameworks

NOTE Any class that implements the Iterable<E> interface type can be used in the “for
each” loop. Therefore, you use the “for each” loop with all collections.

The Collection<E> interface type has the following methods:

boolean add(E obj)
boolean addAll(Collection<? extends E> c)
void clear()
boolean contains(Object obj)
boolean containsAll(Collection<?> c)
boolean equals(Object obj)
int hashCode()
boolean isEmpty()
Iterator<E> iterator()
boolean remove(Object obj)
boolean removeAll(Collection<?> c)
boolean retainAll(Collection<?> c)
int size()
Object[] toArray()
E[] toArray(E[] a)

That is a hefty interface type. It would be quite burdensome to supply all of these meth-
ods for every collection class. For that reason, the framework supplies a class Abstract-
Collection that implements almost all of these methods. For example, here is the
implementation of the toArray method in the AbstractCollection<E> class.

public Object[] toArray()
{
 Object[] result = new Object[size()];
 Iterator e = iterator();
 for (int i = 0; e.hasNext(); i++)
 result[i] = e.next();
 return result;
}

This is again the TEMPLATE METHOD pattern at work: The toArray method is synthe-
sized from the primitive operations size and iterator.

NOTE Because it is impossible to construct an array from a generic type parameter, this
method returns an Object[] array, not an array of type E[].

The AbstractCollection class leaves only two methods undefined. They are
int size()
Iterator<E> iterator()

Any concrete collection class must minimally supply implementations of these two
methods. However, most concrete collection classes also override the add and remove
methods.

OODP2_Ch08_4.fm Page 326 Monday, March 21, 2005 2:54 PM

8.3 The Collections Framework 327

NOTE The AbstractCollection class defines the add method as a dummy operation that
throws an UnsupportedOperationException. That default is reasonable for immutable
collections.

In this section, you will see how to fit the queue class of Chapter 3 into the collections
framework.

We will enhance the queue class of Chapter 3 and define a generic class BoundedQueue
that extends the AbstractCollection class (see Figure 4).

We have to make a slight change to the add method. The collections framework requires
that the add method return true if adding the element modifies the collection. The
queue class always returns true, but a set class would return false if the element to be
added was already present in the set.

Finally, we need to supply an iterator that visits the queue elements. You will find the
code at the end of this section.

What is the benefit of adding the queue class to the collections frame-
work? The Java library contains a number of mechanisms that work
for arbitrary collections. For example, all collections have an addAll
method that does a bulk addition of all elements of one collection to
another. You can pass a BoundedQueue object to this method. Moreover,

the Collections class that you encountered in Chapter 4 has static methods for a num-
ber of common algorithms, such as finding the minimum and maximum element in any
collection. Thus, a large number of methods can be applied to BoundedQueue objects
when the class becomes a part of the framework.

8.3.3 Adding a New Collection to the Framework

A class that is added to the
collections hierarchy can
benefit from the mechanisms
that the framework provides.

Figure 4

Adding the BoundedQueue Class
to the Collections Framework

«interface»
Collection

Abstract
Collection

Bounded
Queue

OODP2_Ch08_4.fm Page 327 Monday, March 21, 2005 2:54 PM

328 CHAPTER 8 Frameworks

NOTE As of version 5.0, the standard library has a Queue interface type. That interface type
has been designed primarily for threadsafe queues. For simplicity, our BoundedQueue class
doesn’t implement it.

NOTE Because it is not possible to construct arrays with a generic type, the BoundedQueue
stores its value in an Object[] array. Casts are used when accessing elements of type E. The
compiler flags these casts as unsafe because it cannot verify their correctness. You can do
better—see Exercise 8.7.

 Ch8/queue/BoundedQueue.java
1 import java.util.*;
2
3 /**
4 A first-in, first-out bounded collection of objects.
5 */
6 public class BoundedQueue<E> extends AbstractCollection<E>
7 {
8 /**
9 Constructs an empty queue.

10 @param capacity the maximum capacity of the queue
11 @precondition capacity > 0
12 */
13 public BoundedQueue(int capacity)
14 {
15 elements = new Object[capacity];
16 count = 0;
17 head = 0;
18 tail = 0;
19 }
20
21 public Iterator<E> iterator()
22 {
23 return new
24 Iterator<E>()
25 {
26 public boolean hasNext()
27 {
28 return visited < count;
29 }
30
31 public E next()
32 {
33 int index = (head + visited) % elements.length;
34 E r = (E) elements[index];
35 visited++;
36 return r;
37 }
38
39 public void remove()
40 {

OODP2_Ch08_4.fm Page 328 Monday, March 21, 2005 2:54 PM

8.3 The Collections Framework 329

41 throw new UnsupportedOperationException();
42 }
43
44 private int visited = 0;
45 };
46 }
47
48 /**
49 Removes object at head.
50 @return the object that has been removed from the queue
51 @precondition size() > 0
52 */
53 public E remove()
54 {
55 E r = (E) elements[head];
56 head = (head + 1) % elements.length;
57 count--;
58 return r;
59 }
60
61 /**
62 Appends an object at tail.
63 @param anObject the object to be appended
64 @return true since this operation modifies the queue.
65 (This is a requirement of the collections framework.)
66 @precondition !isFull()
67 */
68 public boolean add(E anObject)
69 {
70 elements[tail] = anObject;
71 tail = (tail + 1) % elements.length;
72 count++;
73 return true;
74 }
75
76 public int size()
77 {
78 return count;
79 }
80
81 /**
82 Checks whether this queue is full.
83 @return true if the queue is full
84 */
85 public boolean isFull()
86 {
87 return count == elements.length;
88 }
89
90 /**
91 Gets object at head.
92 @return the object that is at the head of the queue
93 @precondition size() > 0
94 */
95 public E peek()
96 {

OODP2_Ch08_4.fm Page 329 Monday, March 21, 2005 2:54 PM

330 CHAPTER 8 Frameworks

97 return (E) elements[head];
98 }
99

100 private Object[] elements;
101 private int head;
102 private int tail;
103 private int count;
104 }

Ch8/queue/QueueTester.java
1 import java.util.*;
2
3 public class QueueTester
4 {
5 public static void main(String[] args)
6 {
7 BoundedQueue<String> q = new BoundedQueue<String>(10);
8
9 q.add("Belgium");

10 q.add("Italy");
11 q.add("France");
12 q.remove();
13 q.add("Thailand");
14
15 ArrayList<String> a = new ArrayList<String>();
16 a.addAll(q);
17 System.out.println("Result of bulk add: " + a);
18 System.out.println("Minimum: " + Collections.min(q));
19 }
20 }

As you have seen, the Collection interface type defines methods that are common to all
collections of objects. That interface type has two important subtypes, Set and List.
Let’s discuss the Set interface first. Its definition is

public interface Set<E> extends Collection<E> { }

Perhaps surprisingly, the Set interface type adds no methods to the Collection interface
type. Why have another interface type when there are no new methods?

Conceptually, a set is a collection that eliminates duplicates. That is, inserting an element
that is already present has no effect on the set. Furthermore, sets are unordered collec-
tions. Two sets should be considered equal if they contain the same elements, but not
necessarily in the same order.

That is, the add and equals methods of a set have conceptual restrictions when compared
to the same methods of the Collection interface type. Some algorithms may require sets,
not arbitrary collections. By supplying a separate interface type, a method can require a
Set parameter and thus refuse collections that aren’t sets.

8.3.4 The Set Interface Type

OODP2_Ch08_4.fm Page 330 Monday, March 21, 2005 2:54 PM

8.3 The Collections Framework 331

The Java collections framework defines a “list” as an ordered collection in which each
element can be accessed by an integer index. The List<E> interface type adds the follow-
ing methods to the Collection<E> interface type:

void add(int index, E obj)
boolean addAll(int index, Collection<? extends E> c)
E get(int index)
int indexOf(E obj)
int lastIndexOf(Object obj)
ListIterator<E> listIterator()
ListIterator<E> listIterator(int index)
E remove(int index)
E set(int index, E element)
List<E> subList(int fromIndex, int toIndex)

As you can see, most of these methods are concerned with the index positions.

The ListIterator<E> interface type is a subtype of Iterator<E>. Here are the added
methods:

int nextIndex()
int previousIndex()
boolean hasPrevious()
E previous()
void add(E obj)
void set(E obj)

Recall from Chapter 1 that an iterator is conceptually located between two elements.
The nextIndex and previousIndex methods yield the index positions of the neighbor
elements. These methods are conceptually tied to the fact that the list iterator visits an
indexed collection.

The other methods are unrelated to indexing. They simply allow backwards movement
and element replacement.

Of course, the best-known class that implements the List interface type is the ArrayList
class. More surprisingly, the LinkedList class also implements the List interface type.
That flies in the face of everything that is taught in a data structures class. Accessing ele-
ments in a linked list by their index is slow: To visit the element with a given index, you
must first visit all of its predecessors.

This is indeed a weakness in the design of the collections framework. It would have been
an easy matter to supply two interface types: OrderedCollection for linked lists and
IndexedCollection for arrays.

The library programmers belatedly noticed this problem when they implemented the
binarySearch method in the Collections class. The binary search algorithm locates an
element in a sorted collection. You start with the middle element. If that element is larger
than the element you are looking for, you search the first half. Otherwise, you search the
second half. Either way, every step cuts the number of elements to consider in half. The
algorithm takes O(log2(n)) steps if the collection has n elements, provided you can access
an individual element in constant time. Otherwise, the algorithm is completely pointless
and it would be faster to use a sequential search that simply looks at all elements.

8.3.5 The List Interface Type

OODP2_Ch08_4.fm Page 331 Monday, March 21, 2005 2:54 PM

332 CHAPTER 8 Frameworks

To fix this problem, version 1.4 of the library added an interface type RandomAccess that
has no methods. It is simply a tagging interface type, to be used with an instanceof test.
For example, a search method can test whether a List supports fast element access or
not:

if (list instanceof RandomAccess)
 // Use binary search
else
 // Use linear search

The ArrayList class implements this interface type, but the LinkedList class does not.

As so often in software design, it is better to be familiar with the foundations of com-
puter science and apply them correctly than to try to patch up one’s design errors later.

Figure 5 shows the List interface type and the classes that implement it.

If you look at the API documentation of the collections framework, you will find many
methods that are tagged as “optional operations”. Among them is the add method of the
Collection interface type. The AbstractCollection class defines the add method so that
an UnsupportedOperationException is thrown when it is called. The optional operations
are controversial, but there is a good reason why the library designers make use of them.
The need for optional operations arises from certain views. A view is an object of a class
that implements one of the interface types in the collections framework, and that permits
restricted access to a data structure.

Figure 5

The List Classes

«interface»
Iterator

«interface»
List

Iterator

«interface»
Collection

«interface»
List

ArrayList LinkedList
«interface»

Random
Access

8.3.6 Optional Operations

OODP2_Ch08_4.fm Page 332 Monday, March 21, 2005 2:54 PM

8.3 The Collections Framework 333

The collections framework defines a number of methods that yield views. Here is a typi-
cal example. An array is a built-in Java type with no methods. The asList method of the
Arrays class turns an array into a collection that implements the List interface type:

String[] strings = { "Kenya", "Thailand", "Portugal" };
List<String> view = Arrays.asList(strings);

You can apply the List methods to the view object and access the array elements. The
view object does not copy the elements in the array. The get and set methods of the view
object are defined to access the original array. You can think of the view as a shallow copy
of the array.

What is the use? A List has a richer interface than an array. You can now take advantage
of operations supplied by the collections framework, such as bulk add:

anotherCollection.addAll(view);

The addAll method asks the view for an iterator, and that iterator enumerates all ele-
ments of the original array.

However, there are some operations that you cannot carry out. You cannot call the add or
remove methods on the view. After all, it is not possible to change the size of the under-
lying array. For that reason, these methods are “optional”. The asList view simply
defines them to throw an UnsupportedOperationException.

Would it have been possible to define a separate interface type that omits the add and
remove methods? The problem is that you soon have an inflation of interface types. Some
views are read-only, other views (such as the one returned by the asList method) allow
modifications, as long as the size of the collection stays the same. These are called “mod-
ifiable” in the API documentation. Having three versions of every interface type (read
only, modifiable, and resizable) adds quite a bit of complexity. The drawback of the
“optional” operations is that the compiler cannot check for errors.

NOTE The Collections utility class has convenient static methods that give unmodifiable
views of collections, lists, sets, and so on. These views are useful if you want to give a client of
a class the ability to view a collection but not to modify it. For example, the Mailbox class of
Chapter 2 can give out an unmodifiable list of messages like this:

public class Mailbox
{
 public List<Message> getMessages()
 {
 return Collections.unmodifiableList(messages);
 }
 . . .
 private ArrayList<Message> messages;
}

The Collections.unmodifiableList method returns an object of a class that implements
the List interface type. Its accessor methods are defined to retrieve the elements of the
underlying list, and its mutator methods fail by throwing an UnsupportedOperation-
Exception.

OODP2_Ch08_4.fm Page 333 Monday, March 21, 2005 2:54 PM

334 CHAPTER 8 Frameworks

In this section we will introduce a simple application framework in
which the programmer has to add a number of classes to complete an
application. The problem domain that we address is the interactive
editing of graphs. A graph is made up of nodes and edges that have cer-
tain shapes.

Consider a class diagram. The nodes are rectangles, and the edges are
either arrows or lines with diamonds. A different example is an elec-
tronic circuit diagram, where nodes are transistors, diodes, resistors,
and capacitors. Edges are simply wires. There are numerous other
examples, such as chemical formulas, flowcharts, organization charts,

and logic circuits.

Traditionally, a programmer who wants to implement, say, a class diagram editor, starts
from scratch and creates an application that can edit only class diagrams. If the
programmer is lucky, code for a similar program, say a flowchart editor, is available for
inspection. However, it may well be difficult to separate the code that is common to all
diagrams from the flowchart-specific tasks, and much of the code may need to be recre-
ated for the class diagram editor.

In contrast, the graph editor framework encapsulates those aspects
that are common to all graph editors, in particular the user interface
and the handling of commands and mouse events. The framework
provides a way for specific diagram types to express their special
demands that go beyond the common services.

Many of the tasks, such as selecting, moving, and connecting elements, are similar for all
editors. Let’s be specific and describe the user interface that our very primitive editor will
have. The screen is divided into two parts, shown in Figure 6.

On the top is a toolbar, a collection of buttons. There is one button for each node type
and one for each edge type. We will see later how a specific application supplies the icons
for the buttons. The leftmost button is the grabber tool that is used for selecting nodes or
edges. Exactly one of the tool buttons is active at any time.

There are also menu options for loading and saving a diagram, and for deleting selected
nodes and edges.

In the middle is the diagram drawing area. The mouse is used for drawing. The program
user can click the mouse on a node, an edge, or in empty space. The user can also use the
mouse to connect nodes or to drag a node to a new position. The mouse actions depend
on where the user clicks or drags, and what the currently selected tool is.

8.4.1 The Problem Domain

8.4 A Graph Editor Framework

The problem domain for our
graph editor framework is the
interactive editing of graphs
that consist of nodes and
edges.

An application that is based on
the graph editor framework
defines specific behavior for
the nodes and edges.

8.4.2 The User Interface

The graph editor framework
encapsulates those aspects
that are common to all graph
editing applications.

OODP2_Ch08_4.fm Page 334 Monday, March 21, 2005 2:54 PM

8.4 A Graph Editor Framework 335

� When the current tool is a node, clicking on an empty space inserts a new node.
Its type is that of the currently selected node in the toolbar.

� When the current tool is the grabber, clicking inside a node or on an edge selects
that node or edge.

� When the current tool is the grabber, starting a drag operation inside an existing
node moves the node as well as the edges that are connected to it.

� When the current tool is an edge, starting a drag operation inside an existing node
and dragging the cursor inside another existing node inserts a new edge. Its type is
that of the currently selected edge in the toolbar.

Of course, programs written with this framework are rather limited in their functionality.
There is no provision to supply text labels for edges and nodes. There is no support for
common commands such as cut/copy/paste or undo/redo. These features can be handled
by an extended version of this framework. This example is kept as simple as possible to
show the main concept: the separation of framework code and application-specific code.

When designing a framework, one must divide responsibilities
between the framework and specific instances of the framework. For
example, it is clear that the code to draw a transistor-shaped node is
not part of the general framework—only of the electronic circuit
instance.

Drawing the shapes of nodes and edges is the responsibility of the
application programmer. The same holds for hit testing: finding out

whether a node or edge is hit by a mouse click. This can be tricky for odd shapes and
cannot be the responsibility of the framework.

On the other hand, drawing the toolbar and managing the mouse clicks is the job of the
framework. An application programmer need not be concerned with these aspects of a
graph editor at all.

Figure 6

An Instance of the Graph
Editor Framework

8.4.3 Division of Responsibility

The framework programmer
is responsible for generic
mechanisms, whereas the
application programmer needs
to supply code that is specific
to a particular application.

OODP2_Ch08_4.fm Page 335 Monday, March 21, 2005 2:54 PM

336 CHAPTER 8 Frameworks

This brings up a very interesting problem. The framework must have
some idea of the node and edge types in the application so that each
type of node or edge can be painted as an icon in a button. Just as
importantly, it must be possible to add new nodes and edges of the

types that are specified in the buttons. The application programmer must tell the frame-
work about the node and edge types that can occur in a particular kind of graph.

There are several ways of achieving this task. For example, a concrete graph could pro-
duce a list of class names or Class objects to describe the node and edge classes.

However, we follow a slightly different approach. In our graph editor framework, a con-
crete graph must give the framework prototype objects. For example, the application
instance in Figure 6 was created by defining a node class, CircleNode, an edge class,
LineEdge, and a SimpleGraph class that specifies two node prototypes and an edge
prototype.

public class SimpleGraph extends Graph
{
 public Node[] getNodePrototypes()
 {
 Node[] nodeTypes =
 {
 new CircleNode(Color.BLACK),
 new CircleNode(Color.WHITE)
 };
 return nodeTypes;
 }

 public Edge[] getEdgePrototypes()
 {
 Edge[] edgeTypes =
 {
 new LineEdge()
 };
 return edgeTypes;
 }
}

When the toolbar is constructed, it queries the graph for the node and edge prototypes
and adds a button for each of them. The nodes and edges draw themselves in the
paintIcon method of the button icon object.

When a user inserts a new node or edge, the object corresponding to the selected tool
button is cloned and then added to the graph:

Node prototype = node of currently selected toolbar button;
Node newNode = (Node) prototype.clone();
Point2D mousePoint = current mouse position;
graph.add(newNode, mousePoint);

Why use prototype objects and not classes? Note that the two circle nodes are instances
of the same class, one with a black fill color and the other with a white fill color. Thus,
cloning prototype objects is a bit more economical than instantiating classes.

A concrete graph class must
enumerate all node and edge
types for the given graph.

OODP2_Ch08_4.fm Page 336 Monday, March 21, 2005 2:54 PM

8.4 A Graph Editor Framework 337

This mechanism is an example of the PROTOTYPE pattern. The pro-
totype pattern gives a solution to the problem of dealing with an
open-ended collection of node and edge types whose exact nature was
not known when the framework code was designed.

Context

1. A system needs to create several kinds of objects whose classes are not known when
the system is built.

2. You do not want to require a separate class for each kind of object.
3. You want to avoid a separate hierarchy of classes whose responsibility it is to create

the objects.

Solution

1. Define a prototype interface that is common to all created objects.
2. Supply a prototype object for each kind of object that the system creates.
3. Clone the prototype object whenever a new object of the given kind is required.

For example, in the case of the node and edge types, we have

The PROTOTYPE pattern teaches
how a system can instantiate
classes that are not known
when the system is built.

PROTOTYPE�

PATTERN

�

�

�

�

�

�

�

�

�

Creator

createInstance()

«interface»
Prototype

Concrete
Prototype1

Clones the
prototype

Concrete
Prototype2

Name in Design Pattern Actual Name

Prototype Node

ConcretePrototype1 CircleNode

Creator The GraphPanel class that handles the mouse operation
for adding new nodes to the graph

OODP2_Ch08_4.fm Page 337 Monday, March 21, 2005 2:54 PM

338 CHAPTER 8 Frameworks

The framework defines the interface types Node and Edge. The meth-
ods of these interface types define the shapes of the nodes and edges.

Both Node and Edge have a draw method that is used when painting
the graph and a contains method that is used to test whether the
mouse point falls on a node or an edge.

Both interface types have a getBounds method that returns the rectangle enclosing the
node or edge shape. That method is needed to compute the total size of the graph as the
union of the bounding rectangles of its parts. The scroll pane that holds the graph panel
needs to know the graph size in order to draw the scroll bars.

The Edge interface type has methods that yield the nodes at the start and end of the
edge.

The getConnectionPoint method in the Node interface type computes an optimal attach-
ment point on the boundary of a node (see Figure 7). Since the node boundary may have
an arbitrary shape, this computation must be carried out by each concrete node class.

The getConnectionPoints method of the Edge interface type yields the two end points of
the edge. This method is needed to draw the “grabbers” that mark the currently selected
edge.

The clone method is declared in both interface types because we require all implement-
ing classes to supply a public implementation of the clone method. That method is
required to clone prototypes when inserting new nodes or edges into the graph. (Recall
that the clone method of the Object class has protected visibility.)

8.4.4 Framework Classes

The Node and Edge interface
types describe the behavior
that is common to all nodes
and edges.

Figure 7

Node Connection Points

Center of node

Boundary point

Exterior point

OODP2_Ch08_4.fm Page 338 Monday, March 21, 2005 2:54 PM

8.4 A Graph Editor Framework 339

Ch8/graphed/Node.java
1 import java.awt.*;
2 import java.awt.geom.*;
3 import java.io.*;
4
5 /**
6 A node in a graph.
7 */
8 public interface Node extends Serializable, Cloneable
9 {

10 /**
11 Draws the node.
12 @param g2 the graphics context
13 */
14 void draw(Graphics2D g2);
15
16 /**
17 Translates the node by a given amount.
18 @param dx the amount to translate in the x-direction
19 @param dy the amount to translate in the y-direction
20 */
21 void translate(double dx, double dy);
22
23 /**
24 Tests whether the node contains a point.
25 @param aPoint the point to test
26 @return true if this node contains aPoint
27 */
28 boolean contains(Point2D aPoint);
29
30 /**
31 Gets the best connection point to connect this node
32 with another node. This should be a point on the boundary
33 of the shape of this node.
34 @param aPoint an exterior point that is to be joined
35 with this node
36 @return the recommended connection point
37 */
38 Point2D getConnectionPoint(Point2D aPoint);
39
40 /**
41 Gets the bounding rectangle of the shape of this node.
42 @return the bounding rectangle
43 */
44 Rectangle2D getBounds();
45
46 Object clone();
47 }

Ch8/graphed/Edge.java
1 import java.awt.*;
2 import java.awt.geom.*;
3 import java.io.*;
4

OODP2_Ch08_4.fm Page 339 Monday, March 21, 2005 2:54 PM

340 CHAPTER 8 Frameworks

5 /**
6 An edge in a graph.
7 */
8 public interface Edge extends Serializable, Cloneable
9 {

10 /**
11 Draws the edge.
12 @param g2 the graphics context
13 */
14 void draw(Graphics2D g2);
15
16 /**
17 Tests whether the edge contains a point.
18 @param aPoint the point to test
19 @return true if this edge contains aPoint
20 */
21 boolean contains(Point2D aPoint);
22
23 /**
24 Connects this edge to two nodes.
25 @param aStart the starting node
26 @param anEnd the ending node
27 */
28 void connect(Node aStart, Node anEnd);
29
30 /**
31 Gets the starting node.
32 @return the starting node
33 */
34 Node getStart();
35
36 /**
37 Gets the ending node.
38 @return the ending node
39 */
40 Node getEnd();
41
42 /**
43 Gets the points at which this edge is connected to
44 its nodes.
45 @return a line joining the two connection points
46 */
47 Line2D getConnectionPoints();
48
49 /**
50 Gets the smallest rectangle that bounds this edge.
51 The bounding rectangle contains all labels.
52 @return the bounding rectangle
53 */
54 Rectangle2D getBounds(Graphics2D g2);
55
56 Object clone();
57 }

OODP2_Ch08_4.fm Page 340 Monday, March 21, 2005 2:54 PM

8.4 A Graph Editor Framework 341

The programmer using this framework must define specific node and edge classes that
realize these interface types:

class Transistor implements Node { . . . }
class Wire implements Edge { . . . }

For the convenience of the programmer, the framework also supplies an abstract class
AbstractEdge that provides reasonable implementations of some, but not all, of the
methods in the Edge interface type. Whenever these default implementations are appro-
priate, a programmer can extend that class rather than having to implement all methods
of the interface type. There is no corresponding AbstractNode class since all of the meth-
ods of the Node interface type require knowledge of the node shape.

Ch8/graphed/AbstractEdge.java
1 import java.awt.*;
2 import java.awt.geom.*;
3
4 /**
5 A class that supplies convenience implementations for
6 a number of methods in the Edge interface type.
7 */
8 public abstract class AbstractEdge implements Edge
9 {

10 public Object clone()
11 {
12 try
13 {
14 return super.clone();
15 }
16 catch (CloneNotSupportedException exception)
17 {
18 return null;
19 }
20 }
21
22 public void connect(Node s, Node e)
23 {
24 start = s;
25 end = e;
26 }
27
28 public Node getStart()
29 {
30 return start;
31 }
32
33 public Node getEnd()
34 {
35 return end;
36 }
37

OODP2_Ch08_4.fm Page 341 Monday, March 21, 2005 2:54 PM

342 CHAPTER 8 Frameworks

38 public Rectangle2D getBounds(Graphics2D g2)
39 {
40 Line2D conn = getConnectionPoints();
41 Rectangle2D r = new Rectangle2D.Double();
42 r.setFrameFromDiagonal(conn.getX1(), conn.getY1(),
43 conn.getX2(), conn.getY2());
44 return r;
45 }
46
47 public Line2D getConnectionPoints()
48 {
49 Rectangle2D startBounds = start.getBounds();
50 Rectangle2D endBounds = end.getBounds();
51 Point2D startCenter = new Point2D.Double(
52 startBounds.getCenterX(), startBounds.getCenterY());
53 Point2D endCenter = new Point2D.Double(
54 endBounds.getCenterX(), endBounds.getCenterY());
55 return new Line2D.Double(
56 start.getConnectionPoint(endCenter),
57 end.getConnectionPoint(startCenter));
58 }
59
60 private Node start;
61 private Node end;
62 }

The Graph class collects the nodes and edges. It has methods for add-
ing, removing, finding, and drawing nodes and edges. Note that this
class supplies quite a bit of useful functionality. This is, of course,
characteristic of frameworks. In order to supply a significant value to
application programmers, the framework classes must be able to sup-

ply a substantial amount of work.

Nevertheless, the Graph class is abstract. Subclasses of Graph must override the abstract
methods

public abstract Node[] getNodePrototypes()
public abstract Edge[] getEdgePrototypes()

These methods are called when a graph is added to a frame. They populate the toolbar
with the tools that are necessary to edit the graph. For example, the getNodePrototypes
method of the SimpleGraph class specifies two circle node prototypes.

Ch8/graphed/Graph.java
1 import java.awt.*;
2 import java.awt.geom.*;
3 import java.io.*;
4 import java.util.*;
5 import java.util.List;
6
7 /**
8 A graph consisting of selectable nodes and edges.

The Graph class supplies
methods for adding, finding,
and removing nodes and
edges.

OODP2_Ch08_4.fm Page 342 Monday, March 21, 2005 2:54 PM

8.4 A Graph Editor Framework 343

9 */
10 public abstract class Graph implements Serializable
11 {
12 /**
13 Constructs a graph with no nodes or edges.
14 */
15 public Graph()
16 {
17 nodes = new ArrayList<Node>();
18 edges = new ArrayList<Edge>();
19 }
20
21 /**
22 Adds an edge to the graph that joins the nodes containing
23 the given points. If the points aren’t both inside nodes,
24 then no edge is added.
25 @param e the edge to add
26 @param p1 a point in the starting node
27 @param p2 a point in the ending node
28 */
29 public boolean connect(Edge e, Point2D p1, Point2D p2)
30 {
31 Node n1 = findNode(p1);
32 Node n2 = findNode(p2);
33 if (n1 != null && n2 != null)
34 {
35 e.connect(n1, n2);
36 edges.add(e);
37 return true;
38 }
39 return false;
40 }
41
42 /**
43 Adds a node to the graph so that the top left corner of
44 the bounding rectangle is at the given point.
45 @param n the node to add
46 @param p the desired location
47 */
48 public boolean add(Node n, Point2D p)
49 {
50 Rectangle2D bounds = n.getBounds();
51 n.translate(p.getX() - bounds.getX(),
52 p.getY() - bounds.getY());
53 nodes.add(n);
54 return true;
55 }
56
57 /**
58 Finds a node containing the given point.
59 @param p a point
60 @return a node containing p or null if no nodes contain p
61 */
62 public Node findNode(Point2D p)
63 {

OODP2_Ch08_4.fm Page 343 Monday, March 21, 2005 2:54 PM

344 CHAPTER 8 Frameworks

64 for (int i = nodes.size() - 1; i >= 0; i--)
65 {
66 Node n = nodes.get(i);
67 if (n.contains(p)) return n;
68 }
69 return null;
70 }
71
72 /**
73 Finds an edge containing the given point.
74 @param p a point
75 @return an edge containing p or null if no edges contain p
76 */
77 public Edge findEdge(Point2D p)
78 {
79 for (int i = edges.size() - 1; i >= 0; i--)
80 {
81 Edge e = edges.get(i);
82 if (e.contains(p)) return e;
83 }
84 return null;
85 }
86
87 /**
88 Draws the graph.
89 @param g2 the graphics context
90 */
91 public void draw(Graphics2D g2)
92 {
93 for (Node n : nodes)
94 n.draw(g2);
95
96 for (Edge e : edges)
97 e.draw(g2);
98 }
99

100 /**
101 Removes a node and all edges that start or end with that node.
102 @param n the node to remove
103 */
104 public void removeNode(Node n)
105 {
106 for (int i = edges.size() - 1; i >= 0; i--)
107 {
108 Edge e = edges.get(i);
109 if (e.getStart() == n || e.getEnd() == n)
110 edges.remove(e);
111 }
112 nodes.remove(n);
113 }
114
115 /**
116 Removes an edge from the graph.
117 @param e the edge to remove
118 */
119 public void removeEdge(Edge e)

OODP2_Ch08_4.fm Page 344 Monday, March 21, 2005 2:54 PM

8.4 A Graph Editor Framework 345

120 {
121 edges.remove(e);
122 }
123
124 /**
125 Gets the smallest rectangle enclosing the graph.
126 @param g2 the graphics context
127 @return the bounding rectangle
128 */
129 public Rectangle2D getBounds(Graphics2D g2)
130 {
131 Rectangle2D r = null;
132 for (Node n : nodes)
133 {
134 Rectangle2D b = n.getBounds();
135 if (r == null) r = b;
136 else r.add(b);
137 }
138 for (Edge e : edges)
139 r.add(e.getBounds(g2));
140 return r == null ? new Rectangle2D.Double() : r;
141 }
142
143 /**
144 Gets the node types of a particular graph type.
145 @return an array of node prototypes
146 */
147 public abstract Node[] getNodePrototypes();
148
149 /**
150 Gets the edge types of a particular graph type.
151 @return an array of edge prototypes
152 */
153 public abstract Edge[] getEdgePrototypes();
154
155 /**
156 Gets the nodes of this graph.
157 @return an unmodifiable list of the nodes
158 */
159 public List<Node> getNodes()
160 {
161 return Collections.unmodifiableList(nodes);
162 }
163
164 /**
165 Gets the edges of this graph.
166 @return an unmodifiable list of the edges
167 */
168 public List<Edge> getEdges()
169 {
170 return Collections.unmodifiableList(edges);
171 }
172
173 private ArrayList<Node> nodes;
174 private ArrayList<Edge> edges;
175 }

OODP2_Ch08_4.fm Page 345 Monday, March 21, 2005 2:54 PM

346 CHAPTER 8 Frameworks

The graph editor uses the following classes for editing the graph:

� GraphFrame: a frame that manages the toolbar, the menu bar,
and the graph panel.

� ToolBar: a panel that holds toggle buttons for the node and
edge icons.

� GraphPanel: a panel that shows the graph and handles the
mouse clicks and drags for the editing commands.

We do not list these classes here. The implementations are straightforward but a bit long.
The graph frame attaches the toolbar and graph panel, sets up the menu, and loads and
saves graphs using object serialization, as discussed in Chapter 7. The toolbar sets up a
row of buttons with icon objects that paint the nodes and edges, and which are scaled
down to fit inside the buttons. The mouse handling of the graph panel is similar to that
of the scene editor in Chapter 6.

Interestingly enough, the Node and Edge interface types are rich enough that the frame-
work classes do not need to know anything about particular node and edge shapes. The
mechanics of mouse movement, rubber banding, and screen update are completely
solved at this level and are of no concern to the programmer using the framework.
Because all drawing and mouse operations are taken care of in the framework classes, the
programmer building a graphical editor on top of the framework can simply focus on
implementing the node and edge types.

The classes for the simple graph editor are summarized in Figure 8. The top four classes
are application-specific. All other classes belong to the framework.

Let’s summarize the responsibilities of the programmer creating a specific diagram
editor:

� For each node and edge type, define a class that implements the Node or Edge
interface type and supply all required methods, such as drawing and containment
testing. For convenience, you may want to subclass the AbstractEdge class.

� Define a subclass of the Graph class whose getNodePrototypes and getEdge-
Prototypes methods supply prototype objects for nodes and edges.

� Supply a class with a main method such as the SimpleGraphEditor class below.

Note that the programmer who turns the framework into an applica-
tion supplies only application-specific classes and does not implement
the user interface or control flow. This is characteristic of using a
framework.

The GraphFrame, ToolBar,
and GraphPanel framework
classes are responsible for the
user interface. Application pro-
grammers need not subclass
these classes.

8.4.5 Turning the Framework into an Application

To build a graph editor applica-
tion, subclass the Graph class
and provide classes that imple-
ment the Node and Edge
interface types.

OODP2_Ch08_4.fm Page 346 Monday, March 21, 2005 2:54 PM

8.4 A Graph Editor Framework 347

Ch8/graphed/SimpleGraph.java
1 import java.awt.*;
2 import java.util.*;
3
4 /**
5 A simple graph with round nodes and straight edges.
6 */
7 public class SimpleGraph extends Graph
8 {
9 public Node[] getNodePrototypes()

10 {
11 Node[] nodeTypes =
12 {
13 new CircleNode(Color.BLACK),
14 new CircleNode(Color.WHITE)
15 };
16 return nodeTypes;
17 }
18
19 public Edge[] getEdgePrototypes()
20 {
21 Edge[] edgeTypes =
22 {
23 new LineEdge()
24 };
25 return edgeTypes;
26 }
27 }

Figure 8

Application and Framework Classes

Simple
Graph

«interface»
Node

«interface»
Edge

Abstract
Edge

Circle
Node

Graph

Line
Edge

Graph
Panel

Graph
Frame

Simple
Graph
Editor

ToolBar

OODP2_Ch08_4.fm Page 347 Monday, March 21, 2005 2:54 PM

348 CHAPTER 8 Frameworks

Ch8/graphed/SimpleGraphEditor.java
1 import javax.swing.*;
2
3 /**
4 A program for editing UML diagrams.
5 */
6 public class SimpleGraphEditor
7 {
8 public static void main(String[] args)
9 {

10 JFrame frame = new GraphFrame(new SimpleGraph());
11 frame.setVisible(true);
12 }
13 }

Ch8/graphed/CircleNode.java
1 import java.awt.*;
2 import java.awt.geom.*;
3
4 /**
5 A circular node that is filled with a color.
6 */
7 public class CircleNode implements Node
8 {
9 /**

10 Construct a circle node with a given size and color.
11 @param aColor the fill color
12 */
13 public CircleNode(Color aColor)
14 {
15 size = DEFAULT_SIZE;
16 x = 0;
17 y = 0;
18 color = aColor;
19 }
20
21 public Object clone()
22 {
23 try
24 {
25 return super.clone();
26 }
27 catch (CloneNotSupportedException exception)
28 {
29 return null;
30 }
31 }
32
33 public void draw(Graphics2D g2)
34 {
35 Ellipse2D circle = new Ellipse2D.Double(
36 x, y, size, size);
37 Color oldColor = g2.getColor();
38 g2.setColor(color);

OODP2_Ch08_4.fm Page 348 Monday, March 21, 2005 2:54 PM

8.4 A Graph Editor Framework 349

39 g2.fill(circle);
40 g2.setColor(oldColor);
41 g2.draw(circle);
42 }
43
44 public void translate(double dx, double dy)
45 {
46 x += dx;
47 y += dy;
48 }
49
50 public boolean contains(Point2D p)
51 {
52 Ellipse2D circle = new Ellipse2D.Double(
53 x, y, size, size);
54 return circle.contains(p);
55 }
56
57 public Rectangle2D getBounds()
58 {
59 return new Rectangle2D.Double(
60 x, y, size, size);
61 }
62
63 public Point2D getConnectionPoint(Point2D other)
64 {
65 double centerX = x + size / 2;
66 double centerY = y + size / 2;
67 double dx = other.getX() - centerX;
68 double dy = other.getY() - centerY;
69 double distance = Math.sqrt(dx * dx + dy * dy);
70 if (distance == 0) return other;
71 else return new Point2D.Double(
72 centerX + dx * (size / 2) / distance,
73 centerY + dy * (size / 2) / distance);
74 }
75
76 private double x;
77 private double y;
78 private double size;
79 private Color color;
80 private static final int DEFAULT_SIZE = 20;
81 }

Ch8/graphed/LineEdge.java
1 import java.awt.*;
2 import java.awt.geom.*;
3
4 /**
5 An edge that is shaped like a straight line.
6 */
7 public class LineEdge extends AbstractEdge
8 {

OODP2_Ch08_4.fm Page 349 Monday, March 21, 2005 2:54 PM

350 CHAPTER 8 Frameworks

9 public void draw(Graphics2D g2)
10 {
11 g2.draw(getConnectionPoints());
12 }
13
14 public boolean contains(Point2D aPoint)
15 {
16 final double MAX_DIST = 2;
17 return getConnectionPoints().ptSegDist(aPoint)
18 < MAX_DIST;
19 }
20 }

In the last section you saw how to customize the framework to a spe-
cific editor application. In this section we will investigate how the
framework code is able to function without knowing anything about
the types of nodes and edges.

The framework code is too long to analyze here in its entirety, and some technical
details, particularly of the mouse tracking, are not terribly interesting. Let’s consider two
operations: adding a new node and adding a new edge.

First let’s look at adding a new node. When the mouse is clicked outside an existing
node, then a new node of the current type is added. This is where the clone operation
comes in. The getSelectedTool method of the ToolBar class returns an object of the
desired node type. Of course, you cannot simply insert that object into the diagram. If
you did, all nodes of the same type would end up in identical positions. Instead you
invoke clone and add the cloned node to the graph. The mousePressed method of the
mouse listener in the GraphPanel class carries out these actions.

public void mousePressed(MouseEvent event)
{
 Point2D mousePoint = event.getPoint();
 Object tool = toolBar.getSelectedTool();
 . . .
 if (tool instanceof Node)
 {
 Node prototype = (Node) tool;
 Node newNode = (Node) prototype.clone();
 graph.add(newNode, mousePoint);
 }
 . . .
 repaint();
}

Figure 9 shows the sequence diagram. Note how the code is completely independent of
the actual node type in a particular application.

8.4.6 Generic Framework Code

The generic framework code
does not need to know about
specific node and edge types.

OODP2_Ch08_4.fm Page 350 Monday, March 21, 2005 2:54 PM

8.4 A Graph Editor Framework 351

Next, consider a more involved action, adding a new edge. When the mouse is clicked,
we must first determine whether the click is inside an existing node. This operation is
carried out in the findNode method of the Graph class, by calling the contains method of
the Node interface:

public Node findNode(Point2D p)
{
 for (Node n : nodes)
 if (n.contains(p)) return n;
 return null;
}

If the mouse is clicked inside an existing node and the current tool is an edge, we
remember the mouse position in the rubberBandStart field of the GraphPanel class.

public void mousePressed(MouseEvent event)
{
 . . .
 Node n = graph.findNode(mousePoint);
 if (tool instanceof Edge)
 {
 if (n != null) rubberBandStart = mousePoint;
 }
 . . .
}

In the mouseDragged method, there are two possibilities. If the current tool is not an
edge, then the purpose of the dragging is to move the selected node elsewhere. We don’t

Figure 9

Inserting a New Node

getPoint

getSelectedTool

clone

add

mouse
listener

: Mouse
Event

: ToolBar prototype
: Node

: Graph

OODP2_Ch08_4.fm Page 351 Monday, March 21, 2005 2:54 PM

352 CHAPTER 8 Frameworks

care about that case right now. However, if we are currently inserting an edge, then we
want to draw a “rubber band”, a line that follows the mouse pointer.

public void mouseDragged(MouseEvent event)
{
 Point2D mousePoint = event.getPoint();
 . . .
 lastMousePoint = mousePoint;
 repaint();
}

The repaint method invokes the paintComponent method of the GraphPanel. It draws
the graph and, if rubberBandStart is not null, the rubber banded line.

public void paintComponent(Graphics g)
{

Figure 10

Inserting a New Edge

mouse
listener

: Graph : Node: ToolBar
mouse
motion
listener

Mouse
pressed

Mouse
dragged

Mouse
released

findNode

contains

getSelectedTool

getPoint

getPoint

getPoint

connect

getSelectedTool

repaint

draw

draw

: Mouse
Event

: Graph
Panel

OODP2_Ch08_4.fm Page 352 Monday, March 21, 2005 2:54 PM

8.5 Enhancing the Graph Editor Framework 353

 Graphics2D g2 = (Graphics2D) g;
 graph.draw(g2);
 if (rubberBandStart != null)
 g2.draw(new Line2D.Double(rubberBandStart, lastMousePoint));
 . . .

}

When the mouse button goes up, we are ready to add the edge.
public void mouseReleased(MouseEvent event)
{
 Object tool = toolBar.getSelectedTool();
 if (rubberBandStart != null)
 {
 Point2D mousePoint = event.getPoint();
 Edge prototype = (Edge) tool;
 Edge newEdge = (Edge) prototype.clone();
 graph.connect(newEdge, rubberBandStart, mousePoint);
 rubberBandStart = null;
 repaint();
 }
}

Figure 10 shows the sequence diagram.

These scenarios are representative of the ability of the framework code to operate with-
out an exact knowledge of the node and edge types.

In this section, we will discuss an important enhancement of the graph editor frame-
work: the ability to edit properties of nodes and edges. We add a menu option Edit →
Properties that pops up a dialog box to edit the properties of the selected node or edge
(see Figure 11).

8.5.1 Editing Node and Edge Properties

8.5 Enhancing the Graph Editor Framework

Figure 11

Editing a Node Property

OODP2_Ch08_4.fm Page 353 Monday, March 21, 2005 2:54 PM

354 CHAPTER 8 Frameworks

Clearly, such a facility is necessary to enable users to select colors, line styles, text labels,
and so on. The challenge for the framework designer is to find a mechanism that allows
arbitrary node and edge classes to expose their properties, and then to provide a generic
user interface for editing them.

Fortunately, this problem has been solved elsewhere. Recall from
Chapter 7 that GUI builders are able to edit arbitrary properties of
JavaBeans components. We will therefore require the implementors of
nodes and edges to expose editable properties using the JavaBeans
convention: with get and set methods. To edit the properties, we
supply a property sheet dialog box that is similar to the property edi-
tor in a GUI builder.

For example, the CircleNode class can expose a Color property simply
by providing two methods

public void setColor(Color newValue)
public Color getColor()

No further work is necessary. The graph editor can now edit node colors.

Let’s consider a more complex change: to support both solid and dotted lines. We will
define an enumerated type LineStyle with two instances:

LineStyle.SOLID
LineStyle.DOTTED

(See Chapter 7 for a discussion of the implementation of enumerated types in Java.)

The LineStyle enumeration has a convenience method
Stroke getStroke()

That method yields a solid or dotted stroke object. The LineEdge method uses that
object in its draw method:

public void draw(Graphics2D g2)
{
 Stroke oldStroke = g2.getStroke();
 g2.setStroke(lineStyle.getStroke());
 g2.draw(getConnectionPoints());
 g2.setStroke(oldStroke);
}

The effect is either a solid or dotted line that joins the connection points.

Of course, we need to add getters and setters for the line style to the LineEdge class.

Altogether, the following changes are required to add colored nodes and dotted lines to
the simple graph editor:

� Add setColor and getColor methods to CircleNode.

� Supply a LineStyle enumeration.

� Enhance the LineEdge class to draw both solid and dotted lines, and add getLine-
Style and setLineStyle methods.

It is a simple matter to support additional graph properties, such as line shapes, arrow
shapes, text labels, and so on.

To enable a graph editor appli-
cation to edit the properties of
nodes or edges, an application
programmer simply imple-
ments them as JavaBeans
properties. The graph editor
framework contains the code
for editing the properties.

OODP2_Ch08_4.fm Page 354 Monday, March 21, 2005 2:54 PM

8.5 Enhancing the Graph Editor Framework 355

Figure 12 shows a simple UML class diagram editor that has been built on top of the
graph editor framework.

The editor is essentially the same as the Violet UML editor. However, it supports only
class diagrams, and it lacks some convenience features such as keyboard shortcuts, image
export, and snap-to-grid.

Of course, the node and edge classes of this editor are more complex.
They format and draw text, compute edges with multiple segments,
and add arrow tips and diamonds. It is instructive to enumerate the
classes that carry out this new functionality. None of these classes are
difficult to implement, although there is an undeniable tedium to

some of the layout computations.

� The RectangularNode class describes a node that is shaped like a rectangle. It is the
superclass of ClassNode.

� The SegmentedLineEdge class implements an edge that consists of multiple line
segments. It is the superclass of ClassRelationshipEdge.

� ArrowHead and BentStyle classes are enumerations for arrow heads and edge
shapes, similar to the LineStyle class of the preceding section.

� MultiLineString formats a string that may extend over multiple lines. A Class-
Node uses multiline strings for the class name, the attributes, and the methods.

� Finally, the ClassDiagramGraph class adds the ClassNode and various edge proto-
types to the toolbar.

The basic framework is not affected at all by these changes. The implementor of the
UML editor need not be concerned about frames, toolbars, or event handling. Even the
editing of properties is automatically provided because the framework supplies a dialog

8.5.2 Another Graph Editor Instance: A Simple UML Class Editor

To build a simple UML editor,
add class node and class rela-
tionship edge classes to the
graph editor framework.

Figure 12

A Simple UML Class Diagram Editor

OODP2_Ch08_4.fm Page 355 Monday, March 21, 2005 2:54 PM

356 CHAPTER 8 Frameworks

box that manipulates the JavaBeans properties (see Figure 13). Thus, the framework
allows the implementor of any particular graph type to focus on the intricacies of the
nodes and edges of just that graph.

The Violet UML editor uses an enhanced version of the graph editor
framework that adds a number of useful features such as graphics
export, a grid for easier alignment, and simultaneous display of multi-
ple graphs. The companion code for this book does not include the
Violet code because some of it is rather lengthy. You can find the
source code at http://horstmann.com/violet.

Remarkably, you can still integrate the simple graph editor with its
circle nodes and line edges into the enhanced framework (see Figure 14).

This demonstrates another advantage of using a framework. By decoupling the frame-
work and the application code, the application designers can take advantage of the
framework evolution, without having to change the application-specific code.

In this chapter, you have learned how to put existing application frameworks to use. In
order to use a framework, you have to understand the requirements that the designer of
the framework set forth for application programmers. For example, to turn the graph
editor framework into an application, you have to supply subclasses of Graph, Node, and
Edge. Other frameworks have similar requirements.

Designing your own framework is a far bigger challenge than using a framework. You
need to have a thorough understanding of the problem domain that the framework
addresses. You need to design an architecture that enables application programmers to

Figure 13

The Edge Property Editor

8.5.3 Evolving the Framework

The Violet UML editor uses an
enhanced version of the graph
editor framework. The simple
graph editor can take advan-
tage of the enhancements with
no changes in application
code.

8.5.4 A Note on Framework Design

OODP2_Ch08_4.fm Page 356 Monday, March 21, 2005 2:54 PM

Exercises 357

add application-specific code, without changing the framework code. The design of the
framework should shield application programmers from internal mechanisms and allow
them to focus on application-specific tasks. On the other hand, you need to provide
“hooks” that allow application programmers to modify the generic framework behavior
when applications require nonstandard mechanisms. It is notoriously difficult to antici-
pate the needs of application programmers. In fact, it is commonly said that a framework
can only claim to have withstood the test of time if it is the basis of at least three different
applications. Rules for the effective design of application frameworks are an area of active
research at this time.

Exercise 8.1. The java.io package contains pluggable streams, such as PushbackInput-
Stream and ZipInputStream. Explain why the stream classes form a framework. Describe
how a programmer can add new stream classes to the framework, and what benefits
those classes automatically have.

Exercise 8.2. Search the Web for application frameworks until you have found frame-
works for three distinct problem domains. Summarize your findings.

Figure 14

The Simple Graph Editor Takes Advantage of the
Enhanced Framework

Exercises

OODP2_Ch08_4.fm Page 357 Monday, March 21, 2005 2:54 PM

358 CHAPTER 8 Frameworks

Exercise 8.3. Turn the scene editor of Chapter 6 into an applet.

Exercise 8.4. Write an applet that can display a bar chart. The applet should obtain the
chart values from a set of param tags.

Exercise 8.5. Explain the phenomenon of “inversion of control”, using the graph editor
framework as an example.

Exercise 8.6. Re-implement the BoundedQueue class as a subtype of the Queue interface
type in the standard library.

Exercise 8.7. Prove the following class invariant for the BoundedQueue<E> class:

� All values in the elements array belong to a subtype of E.

Why does this invariant show that the class implementation is safe, despite the compiler
warnings? Why can’t the compiler determine that the implementation is safe?

Exercise 8.8. Suppose the designers of the collections framework had decided to offer
separate interface types for ordered collections (such as linked lists) and indexed collec-
tions (such as array lists). Explain the changes that must be made to the framework.

Exercise 8.9. Suppose the designers of the collections framework had, instead of allow-
ing “unsupported operations”, supported three kinds of data structures: read-only, modi-
fiable, and resizable. Explain the changes that must be made to the framework. How do
the basic interface types change? Which classes need to be added? Which methods need
to be added to the Arrays and Collections classes?

Exercise 8.10. The RandomAccess interface type has no methods. The Set interface type
adds no methods to its superinterface. What are the similarities and differences between
the functionality that they are designed to provide?

Exercise 8.11. The standard C++ library defines a collections framework (known as STL)
that is quite different from the Java framework. Explain the major differences.

Exercise 8.12. Contrast the algorithms available in the Java collections framework with
those of the standard C++ library.

Exercise 8.13. Enhance the SimpleGraphEditor to support both circular and rectangular
nodes.

Exercise 8.14. Enhance the SimpleGraphEditor to support lines with arrow tips.

Exercise 8.15. Enhance the SimpleGraphEditor to support text annotations of lines.
Hint: Make a label property.

Exercise 8.16. Enhance the SimpleGraphEditor to support multiple arrow shapes:
v-shaped arrow tips, triangles, and diamonds.

Exercise 8.17. Add cut/copy/paste operations to the graph editor framework.

Exercise 8.18. Design a sorting algorithm animation framework. An algorithm anima-
tion shows an algorithm in slow motion. For example, if you animate the merge sort
algorithm, you can see how the algorithm sorts and merges intervals of increasing size.
Your framework should allow a programmer to plug in various sorting algorithms.

OODP2_Ch08_4.fm Page 358 Monday, March 21, 2005 2:54 PM

Exercises 359

Exercise 8.19. Design a framework for simulating the processing of customers at a bank
or supermarket. Such a simulation is based on the notion of events. Each event has a time
stamp. Events are placed in an event queue. Whenever one event has finished processing,
the event with the earliest time stamp is removed from the event queue. That time stamp
becomes the current system time. The event is processed, and the cycle repeats. There are
different kinds of events. Arrival events cause customers to arrive at the bank. A stream
of them needs to be generated to ensure the continued arrival of customers, with some-
what random times between arrivals. This is typically done by seeding the event queue
with one arrival event, and having the processing method schedule the next arrival event.
Whenever a teller is done processing a customer, the teller obtains the next waiting
customer and schedules a “done processing” event, some random time away from the
current time. In the framework, supply an abstract event class and the event processing
mechanism. Then supply two applications that use the framework: a bank with a number
of tellers and a single queue of waiting customers, and a supermarket with a number of
cashiers and one queue per cashier.

OODP2_Ch08_4.fm Page 359 Monday, March 21, 2005 2:54 PM

OODP2_Ch08_4.fm Page 360 Monday, March 21, 2005 2:54 PM

