O]
-
-
fra
®
()
LL
—
O]
>
O
@)

James Gosling

Sun Microsystems Inc.

The Feel of Java

Java is a blue collar language. It’s not PhD thesis material but a language
for a job. Java feels very familiar to many different programmers because

we preferred tried-and-tested things.

started six years ago to look into distributed

control of consumer electronics devices. It
was not an academic research project studying pro-
gramming languages: Doing language research was
actively an antigoal. For the first three years, |
worked on the language and the runtime, and
everybody else in the group worked on a variety of
different prototype applications, the things that
were really the heart of the project. So the drive for
changes came from the people who were actually
using it and saying *“do this, do this, do this.”

Probably the most important thing | learned in
talking to the folks building TVs and VCRs was
that their priorities were quite different from ours
in the computer industry. Whereas five years ago
our mantra was compatibility, the consumer elec-
tronics industry considered secure networking,
portability, and cost far more important. And when
compatibility did become an issue, they limited
notions of compatibility to well-defined interfaces—
unlike the computer industry where the most ubig-
uitous interface around, namely DOS, is full of
secret back doors that make life extremely difficult.

I've listed the differing priorities for the com-
mercial software and consumer electronics indus-
tries in Table 1. One interesting phenomenon that
has occurred over the past five years is that con-
sumer electronics concerns have become main-
stream software concerns as the market for software
in the home has grown.

The buzzwords that have been applied to Java
derive directly from this context. In the consumer
electronics world, you connect your VCR to a tele-
vision, your telephone to a network. And the con-
sumer electronics industry wants to make these
kinds of networked appliances even more pervasive.

Avrchitecture neutrality is another issue. In the con-

J ava evolved out of a Sun research project

This article is based on remarks made at OOPSLA 96.

0018-9162/97/$10.00 © 1997 IEEE

sumer electronics business, there are dozens of dif-
ferent CPU types and good reasons for all of themin
their individual contexts. But developing software
for a dozen different platforms just doesn’t scale, and
it was this desire for architecture neutrality that broke
the C++ mold—not so much C++ the language, but
the standard way people built C++ compilers.

BLUE COLLAR LANGUAGE

Java is a blue collar language. It’s not PhD thesis
material but a language for a job. Java feels very
familiar to many different programmers because |
had a very strong tendency to prefer things that had
been used a lot over things that just sounded like a
good idea. And so Java ended up as this fusion of
four different kinds of programming.

1. It has an object-oriented flavor that derives from
a number of languages—Simula, C/C++,
Obijective C, Cedar/Mesa, Modula, and Smalltalk.

2. Another one of my favorite areas is numeric pro-
gramming. One of the things that’s different
about Java is that we say what 2 + 2 means.
When C came out there were so many different
ways of computing 2 + 2 that you couldn’t lay
down any kind of rule. But today, the IEEE 754
standard for floating-point arithmetic has won,
and the world owes William Kahan and the
other folks who worked on it a real debt,
because it removes much of the complexity and
clutter in numerical programming.

3. Java also has a systems programming flavor
inherited from C that has proven useful over the
years.

4. But the one way in which Java is unique is its
distributed nature—it feels like there aren’t
boundaries between machines. People can have
pieces of behavior squirt back and forth across
the network, picked up here, landed over there.
And they just don’t care. The network, by and

June 1997

Table 1. Differing priorities of the commercial

software and consumer electronics industries
five years ago.

Commercial software Consumer electronics

Compatibility Security
Performance Networking
Portability Portability
Reliability Reliability
Networking Performance
Multithreading Multithreading
Security Compatibility

large, starts to behave like a sea of computation
on which you can go rafting.

Distributed objects on the Web

In this particular environment, one of the key design
requirements was to create quanta of behavior that
could be shipped from place to place. Oddly enough,
classes provide a nice encapsulation boundary for
defining what one of these quantum particles is.

We also wanted to keep these quanta of behavior
separate from data, which at the time was a real
departure. General Magic was doing a very similar
thing, except it was putting the code and the data
together. In some cases this has a real advantage, but
what if you’re shipping around JPEG images? You
end up in an untenable situation if every JPEG image
has to have its own JPEG decompressor: You load a
page with 20 images and end up with 20 JPEG decom-
pressors at 100 Kbytes each.

So we worked hard to make sure that data and
implementation were separate, but that the data could
have tags that say, “I’m a bag of bytes that’s under-
stood by this type.” And if the client doesn’t under-
stand the component’s data type, it would be able to
turn around and say, “Gee Mr. Server, do you have
the implementation for this particular type?”” and
reach out across the Internet, grab the implementa-
tion, and do some checking to make sure that it won'’t
turn the disk drive into a puddle of ash.

Thin clients

You can think of this as the client learning some-
thing. It now understands a new data type that it did-
n’t understand before, and it obtained that knowledge
from some remote repository. You can start building
systems that are much more lean, that feel as though
there’s this core that understands the basic business
of the application.

A Web browser is a good example. It's a simple
loop—a set of interfaces to networking standards,
document format standards, image format standards,
and so on. And other components can plug into this

Computer

browser until you have this huge brick of code around
which you wrap a big steel band. That’s your appli-
cation, and it does everything. But what’s lost in this
pile of support code is the essence of a Web browser.

Similarly, the support code itself tends to lose its
boundaries because people start getting sloppy. They
start saying, ““Well gee, there’s this global variable over
there that HTML was using, but | could use that cre-
atively with my HTTP driver.” It always bites you in
the end, even though short term it feels good. With
Java, we tended to do things that promoted up-front
pain and long-term health, one of those funny reli-
gious principles.

Architecture neutral

Much of Java was driven by the Internet, and there’s
aseries of deductive steps that follow from that starting
point. The Internet has a diverse population, some com-
panies’ aspirations to the contrary. If you need to avoid
doing different versions for different platforms, then you
need some way of distributing software that is archi-
tecturally neutral. C, by and large, has been very
portable, apart from a few gotchas like what does int
mean. So we pushed for a uniform feeling and a deter-
ministic semantics, so that you know what 2 + 2 means
and what kind of evaluation order you have.

JAVA VIRTUAL MACHINE

At the same time, | made the mistake of going to
school too long and actually getting a PhD, so | could-
n’t avoid doing a little bit of theoretical stuff. And
besides, when you have people like Bill Joy (Sun
cofounder and VP for Research) and Guy Steele (Sun
Microsystems Distinguished Engineer) peering over
your shoulder and wagging their fingers at you, things
become a lot cleaner than the initial hacks one is
tempted to commit in the spirit of expediency. And the
theoretical work that went into Java really did add a
lot of cohesiveness and cleanliness to it. Most of those
things are under the covers in the way the virtual
machine works. Things like the verifier, which is this
minidataflow program prover that determines whether
or not programs follow the game rules. But by and
large, this kind of innovation was relatively rare in Java.

We use a very old technique where the compiler gen-
erates some bytecoded instructions for this abstract
virtual machine that’s based largely on work from
Smalltalk and Pascal-P machines. | put a lot of effort
into making it very easy to interpret and verify byte-
code before it was compiled into machine code, using
both an interpreter and a machine code generator to
make sure that generating machine code was pretty
straightforward.

Compile-time checking
The Java compiler does a lot of compile-time check-

ing that people aren’t used to, and some have com-
plained about the compiler’s attitude, that it essentially
has no warnings. For example, “used-before-set™ isa
fatal compilation error rather than just a warning.
These may feel like restrictions, but it’s rare that the
compiler gives an error message without a very good
reason. In all cases, we would try something and see
how many bugs came out of the woodwork.

One of the interesting cases was name hiding. It’s
pretty traditional in languages to allow nested scopes
to have names that are the same as hames in the outer
scope, and that’s certainly the way it was in Java early
on. But people had nasty experiences where they for-
got they named a variable i in an outer scope, then
declared an i in an inner scope thinking they were
referring to the outer scope, and it would get caught
by the inner scope. So we disallowed name hiding,
and it was amazing how many errors were elimi-
nated. Granted, it is sometimes an aggravation, but
statistically speaking, people get burned a lot by
doing that, and we’re trying to avoid people getting
burned.

Garbage collection

Another thing that’s essential for reliability, oddly
enough, is garbage collection. Garbage collection has
a long and honorable history, starting out in the Lisp
community, but it acquired a bad reputation because
it tended to take more time than was necessary.
Garbage collection gained the reputation of being
used by lazy programmers who didn’t want to call
malloc and free. But in actual fact, there are a lot
of other ways to justify it. And to my mind, one of the
ways that works well when you’re talking to some
hard-nosed engineer is that it helps make systems more
reliable. You don’t have memory leaks or dangling
pointers, and you cut your software maintenance bud-
get in half by not having to chase them. With Java,
you never need to worry about pointers off into hyper-
space, pointers to one element beyond the end of your
array.

Pointer restrictions

This also relates to restrictions on pointers and
pointer arithmetic, which can lead to interface
integrity problems. We in the engineering world have
become accustomed to taking back doors into an
object’s private space to solve problems in the short
term. In C, there’s a standard cliché I've used fre-
quently— ((int *) p) [n]—where you take some
pointer, cast it to a pointer or to an integer, subscript
it, and are then able to get anything as anything. The
world is your oyster.

But long term, this practice always bites you. It cre-
ates a tremendous versioning problem, and systems
become incredibly fragile. Having one little private

variable can make the whole system fall apart. If you
look at what often happens in commercial systems,
you’ll find they end up not using object-oriented pro-
gramming because of these back doors. They end up
doing it in a way that hides all the stuff, so that it’s
much more obscure.

Exception handling

The exception model that we picked up pretty much
straight out of Modula 3 has been, | think, a real suc-
cess. Initially, I was somewhat anxious about it,
because the whole notion of having a rigorous proof
that an exception will get tossed can be something of
a burden. But in the end, that is a good burden to
have. When you aren’t testing for exceptions, the code
is going to break at some time in any real environment
where surprising things always happen. Ariane 5 pro-
vides a vivid lesson on how important exception han-
dling is.

Although exception handling makes Java feel some-
what clumsy because it forces you to think about
something you’d rather ignore, your applications are
ultimately much more solid and reliable.

OBJECT-ORIENTED EXTENSIBILITY

One of the things about Java that | pushed on pretty
hard was allowing for future change. Much of that
comes from Java’s Lisp-like late binding, where meth-
ods are looked up on the fly at the very end. But there’s
a lot of optimization that gets done to rewrite the
instructions so that method calls are fast and the var-
ious code generators turn them into the obvious three-
instruction sequence.

Thus, you can add methods almost fearlessly and
can add and remove private variables with total
impunity. You have to make sure of a few things—for
example, that you don’t remove methods that aren’t
being used, or if you want to remove or change them,
you at least leave another method in there whose type
signature is the same. As long as you practice this rel-
atively simple discipline, you can change classes pretty
readily without having to worry about how this
breaks all of your subclasses and the applications
based on them.

What | found most interesting in watching people
use Java was that they used it in a way similar to
rapid prototyping languages. They just whacked
something together. | was initially surprised by that,
because Java is a very strongly typed system, and
dynamic typing is often considered one of the real
requirements of a rapid prototyping environment.
But after watching people for a while and doing it
myself and thinking “Why does this feel this way to
me,” | decided that probably the most important
thing was that in a typical rapid prototyping lan-
guage like Smalltalk, you find out about it fast when

What | found
most
interesting
in watching
people use
Java was
that they
useditina
way similar
to rapid
prototyping
languages.
They just
whacked
something
together.

June 1997

System.getProperty(“os.name”
abstract class Spam {..}

class SpamSolaris extends Spam
Lorod

class SpamWin32 extends Spamf{..}
Class ¢ = Class.forName (“Spam”
+System.getProperty(“os.name”)) ;

Figure 1. Sample adapter providing appropriate subclasses
for different operating systems, thus achieving complete
portablility.

something goes wrong. There aren’t these mysteri-
ous memory smashes. Java does a pretty good job
of avoiding situations where mysterious alpha par-
ticles come in from hyperspace and blow up your
system, where you spend four days to discover that
you had a for-loop clearing an array that went one
element too far, and where that fact isn’t discovered
until thousands of instructions later when some
other memory block is being accessed.

Dynamic linking

Another important aspect of Java is that it’s
dynamic. Dynamic linking—where classes come in
and have their links snapped very late—Ilets you adapt
to change. Change not only in the versioning prob-
lem from one generation of software to the next, but
also in the sense of being able to load handlers for
new data types. It lets the system defer a lot of deci-
sions—principally object layout—to the runtime.

We had a longstanding debate, particularly with
people from the Objective C crowd, about factories
versus constructors. A factory is a static method on a
type—that is, you would say type.new rather than
new Type. | was not totally persuaded by the fac-
tory argument because there was always the problem
of who, in the end, creates the object. So Java stayed
with the C++ way of saying new Type.

But factories are used as a style in places where you
don’t know exactly what you want or if you need a
new object. If you want a font, for example, you don’t
necessarily want to create it and might prefer to look
it up. Java’s dynamic behavior is often fed by this style
of using static factory methods to allocate objects
rather than call the constructor directly.

One way this is used is in this short cliché of doing
new 0On a string name, where you start by calling a
static method on a class called forName, which takes
the string as a parameter and gives you a class object
that happens to have that name. Where this becomes
interesting is when the string parameter to forName
is something that you compute by concatenating
strings together. You use a method on a class object
called makeInstance, which calls the default con-
structor:

Computer

Class ¢ = Class.forName(“foo.”+x);
Thing b (Thing) c.makeInstance();

These two things together interact with these objects
in Java called class loaders, which are responsible for
taking a class name and finding an actual class imple-
mentation for it. This is the central cliché for achiev-
ing this quanta of behavior where we take the MIME
type, for instance, do a little bit of string mushing to
turn the MIME type into a class name, and say
Class.forName, which causes all sorts of HTTP
searches to happen. And then magically you’ve got a
handler for that type that’s been installed dynamically.

Another stylized way we use this is for adapters.
Adapters are interfaces that are designed for achieving
portability. Say you have an interface to some net-
working abstraction or file system, and you want to
provide both a consistent superclass with a consistent
interface and an appropriate subclass that is dependent
upon the actual operating system you’re using. Adapter
objects are often looked up by using a factory rather
than a normal constructor. We then use the previous
cliché fed by a property inquiry like system.getProperty
of os.name, as shown in Figure 1, which returns a string
like Solaris or Win32. If you’re trying to find an imple-
mentation of this abstract class Spam and you have a
SpamSolaris, a SpamWin32, and a SpamMac class, you
can go through this sequence to obtain the appropriate
“spamming” class for your machine. And it ends up
being completely portable.

PERFORMANCE

We were working on a prototype just-in-time com-
piler from the very beginning, as | felt strongly that
Java had to feel fast. | wanted something comparable
to C in performance. This feeling came from watching
what people did with previous scripting languages |
had written, where they always pushed them way
beyond what | expected.

Much of Java’s semantics and that of the virtual
machine were driven by a couple of canonical exam-
ples. Namely, | wantedtogeta = b + c to be one
instruction, and p . m of something to be about three
instructions. It currently tends to be four or five, which
is still a pretty small number. That goal pretty much
dictated that the system be statically typed. Many lan-
guages infer a fair amount of this type information
or they’ll compile it, assume a type, and then do
checks, but that adds a huge amount of complexity.
Strong typing simplifies the translation process
tremendously and picks up a lot of programming
errors as well.

Java 1.0 was tuned far more for portability than for
performance, but I think it still performed reasonably
well. Today, there are a number of JIT compilers on
the market that are not quite up there with C but are

getting awfully close. It’s pretty interesting to have a
language that has a scripting feel without the usual
scripting language performance. Furthermore, rewrit-
ing the interpreter in assembly would give us at least
a factor of three speedup, and actual machine code
generators would give us a factor of 10 or 20. There
is now enough demand for Java to justify all that plat-
form-dependent work, if only because it makes other
people’s jobs easier.

Another important thing about Java is its rich class
library. Java itself, as a language, is pretty simple, as
are most languages. The real action is in the libraries,
and we tried hard to have a fairly large class library
straight out of the box. That was pretty easy for us
because we wrote buckets of code for these prototype
consumer electronics applications. This gives the envi-
ronment a very rich feeling, although it’s clear we have
along way to go. This is probably where we’re work-
ing the hardest right now.

flexible. You can build things with it that are

themselves flexible. Java feels deterministic. You
feel like it’s going to do what you ask it to do. It feels
fairly nonthreatening in that you can just try some-
thing and you’ll quickly get an error message if it’s
crazy. It feels pretty rich. We tried hard to have a fairly
large class library straight out of the box. By and
large, it feels like you can just sit down and write
code. J

S 0, how does Java feel? Java feels playful and

James Gosling is vice president, a Sun fellow, and a
Distinguished Engineer at Sun Microsystems.
Recently, he served as lead engineer for the Java/Hot-
Java system. He has built satellite data acquisition sys-
tems, a multiprocessor version of Unix, and several
compilers, mail systems, and window managers. He
has also built a WYSIWYG text editor, a constraint-
based drawing editor, and a text editor called emacs
for Unix systems. He received a BSc in computer
science from the University of Calgary, Canada, and
a PhD in computer science from Carnegie Mellon
University.

Readers can contact Gosling at Sun Microsystems
Inc., 2550 Garcia Avenue, Mountain View, Calif.
94043.

How to Reach Computer

Writers

We welcome submissions. For detailed information,
write for a Contributors’ Guide (computer
@computer.org) or visit our Web site:
http://computer.org/pubs/computer/computer.htm.

Letters to the Editor
Please provide an e-mail address or daytime phone
with your letter.
Computer Letters
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
fax (714) 821-4010
computer@computer.org

On the Web

Visit our Web site at http://computer.org for
information about joining and getting involved
with the Computer Society and Computer.

Magazine Change of Address

Send change-of-address requests for magazine
subscriptions to address.change@ieee.org.
Make sure to specify Computer.

Membership Change of Address
Send change-of-address requests for the membership
directory to directory.updates@computer.org.

Missing or Damaged Copies
If you are missing an issue or received a damaged copy,
contact membership@computer.org.

Reprints

We sell reprints of articles. For price information or to
order, send a query to computer@computer.org or a fax
to (714) 821-4010.

Reprint Permission

To obtain permission to reprint an article, contact
William Hagen, IEEE Copyrights and Trademarks
Manager, at whagen@ieee.org.

COMPUTER

Innavative technology for computer professionals

June 1997

