

Chapter

26

Big C++, Second Edition

, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Relational Databases

•

To understand how relational databases store information

•

To learn how to query a database with the Structured Query
Language (SQL)

•

To connect to a database with an application programming
interface (API)

•

To write database programs that insert and query data in a
relational database

CHAPTER GOALS

W

hen you store

 data, you want to be able to add more data items, remove data,

change data items, and find items that match certain criteria. However, if you have a

lot of data, it can be difficult to carry out these operations quickly and efficiently.

Because data storage is such a common task, special

database management systems

(DBMS) have been invented that allow the programmer to think in terms of the

data rather than file storage. In this chapter you will learn how to use SQL, the

Structured Query Language, to query and update information in a relational

database, and how to access database information from C++ programs.

bigc2_ch26_174.fm Page 1 Tuesday, January 6, 2009 11:21 AM

2

CHAPTER

26

•

Relational Databases

C

HAPTER

C

ONTENTS

Big C++, Second Edition

, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

A relational database stores information in

tables

. Figure 1shows a
typical table. As you can see, each

row

 in this table corresponds to a
product. Each row contains a sequence of

fields

, with one field per
column. The

column headers

 correspond to attributes of the product:
the product code, description, and unit price. Note that all items in a
particular column have the same type: product codes and description

are strings, unit prices are floating-point numbers. The allowable column types
differ somewhat from one database to another. Table 1 shows types that are com-
monly available in relational databases that follow the SQL (Structured Query Lan-
guage, often pronounced “sequel”) standard. (See [1] for more information on the
SQL standard.)

26.1 Organiz ing Database Informat ion

26.1.1 Database Tables

A relational database
stores information in
tables. Each table column
has a name and a data type.

F igure 1

A Product Table in a Relational Database

Product

Product_Code Description Price

116-064 Toaster 24.95

257-535 Hair dryer 29.95

643-119 Car vacuum 19.99

26.1 Organizing Database Information 2

P

RODUCTIVITY

 H

INT

26.1: Stick with the Standard

4

P

RODUCTIVITY

 H

INT

26.2: Avoid Unnecessary

Data Replication

7

P

RODUCTIVITY

 H

INT

26.3: Don’t Replicate Columns in

a Table

9

26.2 Queries 10

C

OMMON

 E

RROR

26.1: Joining Tables Without

Specifying a Link Condition

15

26.3 Installing a Database 16

P

RODUCTIVITY

 H

INT

26.4: Looking for Help on

the Internet

19

R

ANDOM

 F

ACT

26.1: Open Source and

Free Software

19

26.4 Database Programming in C++ 20

R

ANDOM

 F

ACT

26.1: Let the Database Do

the Work

24

26.5 Case Study: Accessing an
Invoice Database 25

A

DVANCED

 T

OPIC

26.1: Transactions

33

bigc2_ch26_174.fm Page 2 Tuesday, January 6, 2009 11:21 AM

26.1

•

Organizing Database Information

3

Big C++, Second Edition

, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Most relational databases follow the SQL standard. SQL com-
mands are used to interact with the database. There is no relationship
between SQL and C++—they are different languages. However, as
you will see later in this chapter, you can use C++ to send SQL com-
mands to a database.

For example, here is the SQL command to create a product table:

CREATE TABLE Products
(
 Product_Code CHAR(11),
 Description CHAR(40),
 Unit_Price DECIMAL(10, 2)
)

Unlike C++, SQL is not case-sensitive. For example, you could have
spelled the command

create table

 instead of

CREATE TABLE

. How-
ever, as a matter of convention, we will use uppercase letters for SQL
keywords and mixed case for table and column names.

To insert rows into the table, use the

INSERT

 command. Issue one
command for each row, such as

INSERT INTO Products
 VALUES ('257-535', 'Hair dryer', 29.95)

As you can see, SQL uses single quotes (

'

), not double quotes, to delimit strings.
What if you have a string that contains a single quote? Rather than using an escape
sequence (such as

\'

) as in C++, you write the single quote twice, such as

'Sam''s Small Appliances'

If you create a table and subsequently want to delete it, use the

DROP TABLE

 com-
mand. For example,

DROP TABLE Test

Table 1 Some Standard SQL Types and Their Corresponding C++ Types

SQL Data Type C++ Data Type

INTEGER or INT int

REAL float

DOUBLE double

DECIMAL(n, x) Fixed-point decimal numbers with n total digits and
x digits after the decimal point.

BOOLEAN bool

CHARACTER(x) or CHAR(x) Fixed-length string of length x. Similar to string.

SQL (Structured Query
Language) is a command
language for interacting
with a database.

Use the SQL commands
CREATE TABLE and
INSERT INTO to add data
to a database.

bigc2_ch26_174.fm Page 3 Tuesday, January 6, 2009 11:21 AM

4

CHAPTER

26

•

Relational Databases

Big C++, Second Edition

, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Stick with the Standard

The C++ language is highly standardized. You will rarely find compilers that allow you to
specify C++ code that differs from the standard. However, SQL implementations are often
much more forgiving. For example, many SQL database systems allow you to use a C++-
style escape sequence such as

'Sam\'s Small Appliances'

in a SQL string. Probably the vendor thought that this would be “helpful” to programmers
who are familiar with C++.

Unfortunately, this is an illusion. If you deviate from the standard, you limit portability.
Suppose you later want to move your database code to another database system, perhaps to
improve performance or to lower the cost of the database software. If the other database sys-
tem hasn’t implemented a particular deviation, then your code will no longer work and you
need to spend time fixing it.

To avoid these problems, you should stick with the standard. With SQL, you cannot rely
on your database to flag all errors—some of them may be considered “helpful” extensions.
That means that you need to know the standard and have the discipline to follow it.

If you have objects whose data fields are strings, numbers, dates, or other types that
are permissible as table column types, then you can easily store them as rows in a
database table. For example, consider the following

Customer

 class:

class Customer
{
 ...
private:
 string name;
 string address;
 string city;
 string state;
 string zip;
};

It is simple to come up with a table structure for storing customers—see Figure 2.
For other objects, it is not so easy. Consider an invoice. Each invoice object con-

tains a pointer to a customer object.

class Invoice
{
 ...
private:
 Customer* cust;
 ...
};

PRODUCT IV ITY HINT 26.1

26.1.2 Linking Tables

bigc2_ch26_174.fm Page 4 Tuesday, January 6, 2009 11:21 AM

26.1

•

Organizing Database Information

5

Big C++, Second Edition

, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

You cannot simply come up with a single column holding a customer, because

Cus-

tomer*

 isn’t a SQL type. Table entries are very different from C++ variables. The
types of table entries are restricted to SQL types.

Of course, you might consider simply entering all the customer data into the
invoice table—see Figure 3. However, this is actually not a good idea. If you look at
the sample data in Figure 3, you will notice that Sam’s Small Appliances has two
invoices, numbers 11731 and 11733. All information for the customer was

repli-
cated

 in two rows.
This replication has two problems. First, it is wasteful to store the information

multiple times. If the customer places many orders, then the replicated information
can take up a lot of space. More importantly, the replication is

dangerous. Suppose
the customer moves to a new address. Then it would be an easy mistake to update
the customer information in some of the invoice records and leave the old address
in place in others.

In a C++ program, you don’t have either of these problems. Multiple Invoice
objects can contain pointers to a single shared Customer object.

The first step in achieving the same effect in a database is to orga-
nize your data into multiple tables as in Figure 4. Dividing the col-
umns into two tables solves the replication problem. The customer
data are no longer replicated—the Invoice table contains no customer

Figure 2 A Customer Table

Customer

Name Address City State Zip

CHAR (40) CHAR (40) CHAR (30) CHAR (2) CHAR (10)

Sam’s Small Appliances 100 Main Street Anytown CA 98765

Figure 3 A Poor Design for an Invoice Table with Replicated Customer Data

You should avoid rows
with replicated data.
Instead, distribute the
data over multiple tables.

Invoice

Invoice_
Number

Customer_
Name

Customer_
Address

Customer_
City

Customer_
State

Customer_
Zip ...

INTEGER CHAR (40) CHAR (40) CHAR (30) CHAR (2) CHAR (10) ...

11731 Sam’s Small
Appliances

100 Main Street Anytown CA 98765 ...

11732 Electronics
Unlimited

1175 Liberty Ave Pleasantville MI 45066 ...

11733 Sam’s Small
Appliances

100 Main Street Anytown CA 98765 ...

bigc2_ch26_174.fm Page 5 Tuesday, January 6, 2009 11:21 AM

6 CHAPTER 26 • Relational Databases

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

information, and the Customer table contains a single record (row) for each cus-
tomer. But how can we refer to the customer to which an invoice is issued? Notice
in Figure 4 that there is now a Customer_Number column in both the Customer table
and the Invoice table. Now all invoices for Sam’s Small Appliances share only the
customer number. The two tables are linked by the Customer_Number field. To find
out more details about this customer, you need to use the customer number to look
up the customer in the customer table.

Note that the customer number is a unique identifier. We introduced the cus-
tomer number because the customer name by itself may not be unique. For exam-
ple, there may be multiple Electronics Unlimited stores in various locations. Thus,
the customer name alone does not uniquely identify a record, so we cannot use the
name as a link between the two tables.

In database terminology, a field (or combination of fields) that
uniquely identifies a row in a table is called a primary key. In our Cus-
tomer table, the Customer_Number column contains a primary key. Not
all database tables need a primary key. A primary key is needed only if
you want to establish a link to another table. For example, the Cus-
tomer table needs a primary key so you can link customers to invoices.

When a primary key is linked to another table, the matching field
(or combination of fields) in that table is called a foreign key. For
example, the Customer_Number in the Invoice table contains a foreign
key, linked to the primary key in the Customer table. Unlike primary

Figure 4 Two Tables for Invoice and Customer Data

Customer

Customer_
Number Name Address City State Zip

INTEGER CHAR (40) CHAR (40) CHAR (30) CHAR (2) CHAR (10)

3175 Sam’s Small Appliances 100 Main Street Anytown CA 98765

3176 Electronics Unlimited 1175 Liberty Ave Pleasantville MI 45066

Invoice

Invoice_
Number

Customer_
Number Payment

INTEGER INTEGER DECIMAL (10, 2)

11731 3175 0

11732 3176 249.95

11733 3175 0

A primary key is a column
(or set of columns) whose
value uniquely specifies a
table record.

A foreign key is a
reference to a primary key
in a linked table.

bigc2_ch26_174.fm Page 6 Tuesday, January 6, 2009 11:21 AM

26.1 • Organizing Database Information 7

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

keys, foreign keys need not be unique. For example, in our Invoice table we have
several records that all have the same value for the Customer_Number foreign key.

Note that the linkage between tables is not automatically maintained by the data-
base. A change to a Customer_Number in the Customer table will not automatically
change that number in the Invoice table. It is up to the database programmer to
ensure that linked records have matching primary and foreign keys.

Avoid Unnecessary Data Replication

It is very common for beginning database designers to replicate data in a table. Whenever
you find yourself replicating data in a table, ask yourself if you can move the replicated data
into a separate table and use a key such as a code or ID number to link the tables.

Consider this example from an Invoice table:

As you can see, some product information is replicated. Is this replication an error? It
depends. The product description for the product with code 116-064 is always going to be
“Toaster”. Therefore, that correspondence should be stored in an external Product table.

The product price, however, can change over time. When it does, old invoices don’t auto-
matically use the new price. Thus, it makes sense to store the price that the customer was
actually charged in an Invoice table. The current list price, however, is best stored in an
external Product table.

Each invoice is linked to exactly one customer. On the other hand, each invoice has
many items. (As in Chapter 22, an item identifies the product, quantity, and unit
price.) Thus, there is a one-to-many relationship between invoices and items.

In the C++ class, the Item objects are stored in a vector:
class Invoice
{
 ...

PRODUCT IV ITY HINT 26.2

Invoice

... Product_Code Description Price ...

... CHAR (10) CHAR (40) DECIMAL (10, 2) ...

... 116-064 Toaster 24.95 ...

... 116-064 Toaster 24.95 ...

...

26.1.3 Implementing One-to-Many Relationships

bigc2_ch26_174.fm Page 7 Tuesday, January 6, 2009 11:21 AM

8 CHAPTER 26 • Relational Databases

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

private:
 Customer* cust;
 vector<Item> items;
 double payment;
};

However, in a relational database, you need to store the information in tables. Sur-
prisingly many programmers, when faced with this situation, commit a major blun-
der and replicate columns, one for each item, as in Figure 5.

Clearly, this design is not satisfactory. What should we do if there are more than
three items on an invoice? Perhaps we should have ten columns instead? But that is

Figure 5 A Poor Design for an Invoice Table with Replicated Columns

Invoice

Invoice_
Number

Customer_
Number

Product_
Code1 Quantity1 Product_

Code2 Quantity2 Product_
Code3 Quantity3 Payment

INTEGER INTEGER CHAR (10) INTEGER CHAR (10) INTEGER CHAR (10) INTEGER DECIMAL (10, 2)

11731 3175 116-064 3 257-535 1 643-119 2 0

Figure 6 Linked Invoice and Item Tables Implement a Multi-Valued Relationship

Invoice

Invoice_Number Customer_Number Payment

INTEGER INTEGER DECIMAL (10, 2)

11731 3175 0

11732 3176 249.50

11733 3175 0

Item

Invoice_Number Product_Code Quantity

INTEGER CHAR (10) INTEGER

11731 116-064 3

11731 257-535 1

11731 643-119 2

11732 116-064 10

11733 116-064 2

11733 643-119 1

bigc2_ch26_174.fm Page 8 Tuesday, January 6, 2009 11:21 AM

26.1 • Organizing Database Information 9

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

wasteful if the majority of invoices only have a couple of items, and it does not solve
the problem of the occasional invoice with lots of items.

Instead, you should distribute the information into two tables: one for invoices
and another for items. Link each item back to its invoice with an Invoice_Number
foreign key in the item table—see Figure 6.

Our database now consists of four tables:

• Invoice
• Customer
• Item
• Product

Figure 7 shows the links between these tables. In the next section you will see how
to query this database for information about invoices, customers, and products. The
queries will take advantage of the links between the tables.

Don’t Replicate Columns in a Table

If you find yourself numbering columns in a table with suffixes 1, 2, and so forth (such as
Quantity1, Quantity2, Quantity3 in the preceding example), then you are probably on the
wrong track. How do you know there are exactly three quantities? In this case, it’s time for
another table.

Add a table to hold the information for which you replicated the columns. In that table,
add a column that links back to a key in the first table, such as the invoice number in our
example. By using an additional table, you can implement a one-to-many relationship.

Figure 7 Links Between the Tables in the Sample Database

Customer_Number

Invoice_Number

Product_Code

Invoice Customer

Item

Product

PRODUCT IV ITY HINT 26.3

bigc2_ch26_174.fm Page 9 Tuesday, January 6, 2009 11:21 AM

10 CHAPTER 26 • Relational Databases

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Let us assume that the tables in our database have been created and that records
have been inserted. Once a database is filled with data, you will want to query the
database for information, such as

• What are the names and addresses of all customers?
• What are the names and addresses of all customers in California?
• What are the names and addresses of all customers who buy toasters?
• What are the names and addresses of all customers with unpaid invoices?

In this section you will learn how to formulate both simple and complex queries in
SQL. We will use the data shown in Figure 8 for our examples.

26.2 Quer ies

Figure 8 A Sample Database

Invoice

Invoice_
Number

Customer_
Number Payment

INTEGER INTEGER DECIMAL (10, 2)

11731 3175 0

11732 3176 249.50

11733 3175 0

Item

Invoice_
Number

Product_
Code Quantity

INTEGER CHAR (10) INTEGER

11731 116-064 3

11731 257-535 1

11731 643-119 2

11732 116-064 10

11733 116-064 2

11733 643-119 1

Product

Product_Code Description Unit_Price

CHAR (10) CHAR (40) DECIMAL (10, 2)

116-064 Toaster 24.95

257-535 Hair dryer 29.95

643-119 Car vacuum 19.99

Customer

Customer_
Number Name Address City State Zip

INTEGER CHAR (40) CHAR (40) CHAR (30) CHAR (2) CHAR (10)

3175 Sam’s Small Appliances 100 Main Street Anytown CA 98765

3176 Electronics Unlimited 1175 Liberty Ave Pleasantville MI 45066

bigc2_ch26_174.fm Page 10 Tuesday, January 6, 2009 11:21 AM

26.2 • Queries 11

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

In SQL, you use the SELECT command to issue queries. For example,
the command to select all data from the Customer table is

SELECT * FROM Customer

The outcome of the query is a view—a set of rows and columns that provides a
“window” through which you can see some of the database data.

Many database systems have tools that allow you to issue interactive SQL com-
mands—Figure 9 shows a typical example. When you issue a SELECT command, the
tool displays the resulting view. You may want to skip ahead to Section 26.3 and
install a database now—or see whether your computer lab has a database installed
already. Then you can run the interactive SQL tool for your database and try out
some queries.

26.2.1 Simple Queries

Use the SQL SELECT
command to query a
database.

Customer_Number Name Address City State Zip

3175 Sam’s Small Appliances 100 Main Street Anytown CA 98765

3176 Electronics Unlimited 1175 Liberty Ave Pleasantville MI 45066

Figure 9 An Interactive SQL Tool

bigc2_ch26_174.fm Page 11 Tuesday, January 6, 2009 11:21 AM

12 CHAPTER 26 • Relational Databases

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Often, you don’t care about all columns in a table. Suppose your traveling salesper-
son is planning a trip to all customers. To plan the route, the salesperson just wants
to know the cities and states of all customers. Here is the query:

SELECT City, State FROM Customer

The result is

As you can see, the syntax for selecting columns is straightforward. You simply
specify the names of the columns you want, separated by commas.

You just saw how you can restrict a view to show selected columns. Sometimes you
want to select certain rows that fit a particular criterion. For example, you may
want to find all customers in California. Whenever you want to select a subset, you
use the WHERE clause, followed by the condition that describes the subset. Here is an
example.

SELECT * FROM Customer WHERE State = 'CA'

The result is

You have to be a bit careful with expressing the condition in the WHERE clause,
because SQL syntax differs from the C++ syntax. As you already know, in SQL
you use single quotes to delimit strings, such as 'CA'. You also use a single =, not a
double ==, to test for equality. To test for inequality, you use the <> operator. For
example

SELECT * FROM Customer WHERE State <> 'CA'

selects all customers that are not in California. (Whether or not string comparison is
case sensitive depends, unfortunately, on the database vendor and the chosen instal-
lation defaults.)

You can match patterns with the LIKE operator. The right-hand side must be a
string that can contain the special symbols _ (match exactly one character) and %
(match any character sequence). For example, the expression

Name LIKE '_o%'

26.2.2 Selecting Columns

City State

Anytown CA

Pleasantville MI

26.2.3 Selecting Subsets

Customer_Number Name Address City State Zip

3175 Sam’s Small Appliances 100 Main Street Anytown CA 98765

bigc2_ch26_174.fm Page 12 Tuesday, January 6, 2009 11:21 AM

26.2 • Queries 13

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

matches all strings whose second character is an “o”. Thus, “Toaster” is a match but
“Crowbar” is not.

You can combine expressions with the logical connectives AND, OR, and NOT. (Do
not use the C++ &&, ||, and ! operators.) For example,

SELECT *
 FROM Product
 WHERE Unit_Price < 100
 AND Description <> 'Toaster'

selects all products with a price less than 100 that are not toasters.
Of course, you can select both row and column subsets, such as
SELECT Name, City FROM Customer WHERE State = 'CA'

Suppose you want to find out how many customers there are in California. Use the
COUNT function:

SELECT COUNT(*) FROM Customer WHERE State = 'CA'

In addition to the COUNT function, there are four other functions: SUM, AVG (average),
MAX, and MIN.

The * parameter of the COUNT function means that you want to calculate entire
records. That is appropriate only for COUNT. For other functions, you have to access
a specific column. Put the column name inside the parentheses:

SELECT AVG(Unit_Price) FROM Product

The queries that you have seen so far involve a single table. However, usually the
information that you want is distributed over multiple tables. For example, suppose
you are asked to find all invoices that include an item for a car vacuum. From the
Product table, you can issue a query to find the product code:

SELECT Product_Code
 FROM Product
 WHERE Description = 'Car vacuum'

You will find out that the car vacuum has product code 643-119. Then you can issue
a second query

SELECT Invoice_Number
 FROM Item
 WHERE Product_Code = '643-119'

But it makes sense to combine these two queries so that you don’t have to keep
track of the intermediate result. When combining queries, note that the two tables
are linked by the Product_Code field. We want to look at matching rows in both
tables. In other words, we want to restrict the search to rows where

Product.Product_Code = Item.Product_Code

26.2.4 Calculations

26.2.5 Joins

bigc2_ch26_174.fm Page 13 Tuesday, January 6, 2009 11:21 AM

14 CHAPTER 26 • Relational Databases

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Here, the syntax
TableName.ColumnName

denotes the column in a particular table. Whenever a query involves multiple tables,
you should specify both the table name and the column name. Thus, the combined
query is

SELECT Item.Invoice_Number
 FROM Product, Item
 WHERE Product.Description = 'Car vacuum'
 AND Product.Product_Code = Item.Product_Code

The result is

In this query, the FROM clause contains the names of multiple tables,
separated by commas. (It doesn’t matter in which order you list the
tables.) Such a query is often called a join because it involves joining
multiple tables.

You may want to know in what cities hair dryers are popular. Now you need to
add the Customer table to the query—it has the customer addresses. The customers
are referenced by invoices, so you need that table as well. Here is the complete query:

SELECT Customer.City, Customer.State, Customer.Zip
 FROM Product, Item, Invoice, Customer
 WHERE Product.Description = 'Hair dryer'
 AND Product.Product_Code = Item.Product_Code
 AND Item.Invoice_Number = Invoice.Invoice_Number
 AND Invoice.Customer_Number
 = Customer.Customer_Number

The result is

Whenever you formulate a query that involves multiple tables, remember to do all
of the following:

• List all tables that are involved in the query in the FROM clause.
• Use the TableName.ColumnName syntax to refer to column names.
• List all join conditions (TableName1.ColumnName1 =

TableName2.ColumnName2) in the WHERE clause.

As you can see, these queries can get a bit complex. However, databases are very
good at answering these queries (see Productivity Hint 26.5 on page 24). One

Invoice_Number

11731

11733

A join is a query that
involves multiple tables.

City State Zip

Anytown CA 98765

bigc2_ch26_174.fm Page 14 Tuesday, January 6, 2009 11:21 AM

26.2 • Queries 15

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

remarkable aspect of SQL is that you tell the database what you want, not how it
should find the answer. It is entirely up to the database to come up with a plan for
how to find the answer to your query in the shortest number of steps. Commercial
database manufacturers take great pride in coming up with clever ways to speed up
queries: query optimization strategies, caching of prior results, and so on. In this
regard, SQL is a very different language from C++. SQL statements are descriptive
and leave it to the database how to execute them. C++ statements are prescriptive—
you spell out exactly the steps you want your program to carry out.

Joining Tables Without Specifying a Link Condition

If you select data from multiple tables without a restriction, the result is somewhat surpris-
ing—you get a result set containing all combinations of the values, whether or not one of the
combinations exists with actual data. For example, this query returns the following result set.

SELECT Invoice.Invoice_Number, Customer.Name
 FROM Invoice, Customer

As you can see, the result set contains all six combinations of invoice numbers and customer
names, even though three of those combinations don’t occur with real invoices. You need to
supply a WHERE clause to restrict the set of combinations; this query gets the result set below:

SELECT Invoice.Invoice_Number, Customer.Name
 FROM Invoice, Customer
 WHERE Invoice.Customer_Number = Customer.Customer_Number

COMMON ERROR 26.1

Invoice.Invoice_Number Customer.Name

11731 Sam’s Small Appliances

11732 Sam’s Small Appliances

11733 Sam’s Small Appliances

11731 Electronics Unlimited

11732 Electronics Unlimited

11733 Electronics Unlimited

Invoice.Invoice_Number Customer.Name

11731 Sam’s Small Appliances

11732 Electronics Unlimited

11733 Sam’s Small Appliances

bigc2_ch26_174.fm Page 15 Tuesday, January 6, 2009 11:21 AM

16 CHAPTER 26 • Relational Databases

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Up to now, you have seen how to formulate increasingly complex
SELECT queries. The outcome of a SELECT query is a result set that you
can view and analyze. Two related statement types, UPDATE and
DELETE, don’t produce a result set. Instead, they modify the database.

The DELETE statement is the easier of the two. It simply deletes the rows that you
specify. For example, to delete all customers in California, you issue the statement

DELETE FROM Customer WHERE State = 'CA'

The UPDATE query allows you to update columns of all records that fulfill a certain
condition. For example, here is how you can add another unit to the quantity of
every item in invoice number 11731.

UPDATE Item
 SET Quantity = Quantity + 1
 WHERE Invoice_Number = '11731'

You can update multiple column values by specifying multiple update expressions
in the SET clause, separated by commas.

Both the DELETE and the UPDATE statements return a value, namely the number of
rows that are deleted or updated.

A wide variety of database systems are available. Among them are

• High-performance commercial databases such as Oracle, DB2, and Microsoft
SQL Server

• Open-source databases such as PostgreSQL and MySQL
• Desktop databases such as Access and Foxpro

Which one should you choose for learning database programming? That depends
greatly on your budget, computing resources, and experience with installing com-
plex software. In a laboratory environment with a trained administrator, it makes a
lot of sense to install a commercial database such as Oracle, but the products them-
selves, the hardware to run them, and the staff to administer them are expensive.
Open-source alternatives are available free of charge, and their quality has greatly
increased in recent years. Although they may not be suited for large-scale applica-
tions, they work fine for learning purposes. Desktop databases such as Access are
less standard-compliant and more suitable for interactive use than for program-
ming.

In this chapter, we will use the popular MySQL database. It is an open-source
product that runs on a wide variety of platforms and is in use by many companies
and organizations around the world. Of course, since SQL is a widely supported
standard, you can use another database to try out the SQL commands of the pre-
ceding sections.

26.2.6 Updating and Deleting Data

The UPDATE and DELETE
commands modify the
data in a database.

26.3 Inst a l l ing a Dat abase

bigc2_ch26_174.fm Page 16 Tuesday, January 6, 2009 11:21 AM

26.3 • Installing a Database 17

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

However, connecting to a database from a C++ program is not
standardized. Each database has its own API (application program-
ming interface). Fortunately, after you learn the MySQL API, you
should find it straightforward to learn another database API. The
underlying principles are the same, even though the names of the
individual functions and data structures differ.

If you work in a computing laboratory, someone will have installed a database
for you, and you should be able to find instructions on how to use it. In this sec-
tion, we discuss several concepts that you need to know when installing and admin-
istering your own database. The details depend on your operating system—see the
companion Web site for more information.

Here we give you a general sequence of steps for installing a database and testing
your installation.

1. Obtain the database program, either on CD-ROM or by downloading it from
the Web.

2. Read the installation instructions.
3. Install the program. Details vary greatly. This may be as simple as running an

installation program or as involved as recompiling the program from its
source code.

4. Start the database. You need to start the database server before you can carry
out any database operations. For example, with MySQL, the mysqld program
starts the database server. Read the installation instructions for details.

5. Find out the name and password of the database administrator account. Some-
times, the database administrator account is the same as an administrator
account for your operating system, but on other platforms, it is not. Read the
installation instructions for details.

6. Locate the program for executing interactive SQL instructions. (With
MySQL, the program is called mysql.) Find out how to log on as the database
administrator. Then run the following SQL instructions:

CREATE TABLE Test (Name CHAR(20))
INSERT INTO Test VALUES ('Romeo')
SELECT * FROM Test
DROP TABLE Test

At this point, you should get a display that shows a single row and column of
the Test database, containing the string “Romeo”. If not, carefully read the
documentation of your SQL tool to see how you need to enter SQL state-
ments. For example, with MySQL, you need a semicolon after each SQL
statement.

7. Set up databases. A database is a collection of tables. A database program such
as MySQL can manage multiple databases, each of which contains separate
table sets and access permissions. This step typically involves running an
administration program, logging in as database administrator, and creating one
or more databases. For the programs in the next section, you need to create a
database named “bigcpp”.

You use an application
programming interface
(API) to access a database
from a C++ program.

bigc2_ch26_174.fm Page 17 Tuesday, January 6, 2009 11:21 AM

18 CHAPTER 26 • Relational Databases

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

8. Set up user accounts. This step typically involves running an administration
program, logging in as database administrator, and adding user names, pass-
words, and permissions. If you are the only user of the database, you may be
able to use a default account. Again, details vary greatly among databases, and
you should consult the documentation.

Once your database is set up and functioning correctly, you need to find out how to
connect to it from C++. The preceding instructions applied to all SQL databases,
but the following steps are specific to MySQL.

1. Make a copy of the execsql.cpp program from Section 27.4.7. Examine the call
to the mysql_real_connect function inside the main function:

if (mysql_real_connect(connection, NULL, NULL, NULL,
 "bigcpp", NULL, 0, NULL) == NULL)

If you need to connect to a remote database or a database with multiple users,
change the first three NULL parameters to strings denoting the host server, the
database user name, and the password.

2. Locate the directories for the header file mysql.h and the mysqlclient library
files. They should be in the include and lib subdirectories of the MySQL
installation directory. Add the path of the header file directory to your com-
piler’s header file directories. Add the library to your compiler’s libraries.
Compile the execsql program. For example, on Linux, you use the command

g++ -o execsql `mysql_config --cflags` execsql.cpp
 `mysql_config --libs`

3. Locate the file test.sql that contains the same SQL instructions as the data-
base test in Step 6 above. It is included with the code distribution for this
book. Then run the command

execsql < test.sql

The program should print “Romeo”, the same output as with the first data-
base test. If this test passes, then you are ready to run the programs of the next
section.
If your program doesn’t work, there are several possible causes.

• If the execsql program didn’t compile, check the settings for the header files
and the libraries. Make sure that mysql.h and the mysqlclient library are
included.

• If the program starts and does nothing, check that you invoked it correctly,
as execsql < test.sql.

• If the program exits with an error message, check that you started the data-
base before running the execsql program.

• Check that you created the bigcpp database and gave at least one database
user the right to access it.

• If you left the mysql_real_connect parameters as NULL, check that the user
running the program has the right to access the database.

bigc2_ch26_174.fm Page 18 Tuesday, January 6, 2009 11:21 AM

26.3 • Installing a Database 19

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Looking for Help on the Internet

When setting up a new software package, particularly one as complex as a database, it is
extremely common to make a few errors. Fortunately, advice for many problems can be
readily found on the Internet. Software providers, user groups, and helpful individuals have
set up Web sites with installation directions, FAQ (frequently asked question) lists, discus-
sion boards, and tutorials.

If you encounter an incomprehensible error message, try pasting it into your favorite
search engine. For example, suppose you try to compile the execsql program under Linux
and get the error message: “my_compress.o: undefined reference to compress”. An Internet
search will reveal many discussion groups with pleas from help by other programmers who
encountered the exact same problem. You might want to join one of the discussion groups.
But before you do and post your own plea for help, first read some of the answers. In this
case, you will find a suggestion to add the -lz option, which links in the compression library.
Try it, and the error message goes away.

The Internet is a marvelous tool for support. Instead of toiling in isolation, you can learn
from the experience of your peers. However, be sure to do your research first rather than
making others do your work—see the excellent article [2] by Eric Raymond and Rick Moen.

Open Source and Free Software

Most companies that produce software regard the source code as a trade secret. After all, if
customers or competitors had access to the source code, they could study it and create simi-
lar programs without paying the original vendor. For the same reason, customers dislike
secret source code. If a company goes out of business or decides to discontinue support for a
computer program, its users are left stranded. They are unable to fix bugs or adapt the pro-
gram to a new operating system.

Nowadays, some software packages are distributed with “open source” or “free soft-
ware” licenses. Here, the term “free” doesn’t refer to price, but to the freedom to inspect and
modify the source code. Richard Stallman, a famous computer scientist and winner of a Mac-
Arthur “genius” grant, pioneered the concept of free software. He is the inventor of the
Emacs text editor and the originator of the GNU project that aims to create an entirely free
version of a Unix compatible operating system. All programs of the GNU project are
licensed under the General Public License or GPL. The GPL allows you to make as many
copies as you wish, make any modifications to the source, and redistribute the original and
modified programs, charging nothing at all or whatever the market will bear. In return, you
must agree that your modifications also fall under the GPL. You must give out the source
code to any changes that you distribute, and anyone else can distribute them under the same
conditions. The GPL, and similar open source licenses, form a social contract. Users of the
software enjoy the freedom to use and modify the software, and in return they are obligated
to share any improvements that they make. Many programs, such as the Linux operating
system and the MySQL database, are distributed under the GPL.

Some commercial software vendors have attacked the GPL as “viral” and “undermining
the commercial software sector”. Other companies have a more nuanced strategy, producing

PRODUCT IV ITY HINT 26.4

RANDOM FACT 26.1

bigc2_ch26_174.fm Page 19 Tuesday, January 6, 2009 11:21 AM

20 CHAPTER 26 • Relational Databases

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

proprietary software while also contributing to open source projects. MySQL, in particular,
can be licensed from its vendor under a non-GPL license so that it can be included in propri-
etary software. Of course, then the licensee needs to share the profits with the vendor.

Frankly, open source is not a panacea and there is plenty of room for the commercial soft-
ware sector. Open source software often lacks the polish of commercial software because
many of the programmers are volunteers who are interested in solving their own problems,
not in making a product that is easy to use by others. Some product categories are not avail-
able at all as open source software because the development work is unattractive when there
is little promise of commercial gain. Open source software has been most successful in areas
that are of interest to programmers, such as the Linux operating system, Web servers, and
programming tools.

On the positive side, the open software community can be very competitive and creative.
It is quite common to see several competing projects that take ideas from each other, all rap-
idly becoming more capable. Having many programmers involved, all reading the source
code, means that bugs tend to get squashed quickly. Eric Raymond describes open source
development in his famous article “The Cathedral and the Bazaar” [3]. He writes “Given
enough eyeballs, all bugs are shallow”.

The MySQL database includes an application programming interface (API) that
allows C and C++ programs to access the database, execute database commands,
issue queries, and retrieve the query results. Because the API is usable with the C
programming language, it does not use classes, and it uses character arrays instead
of strings. We will simply convert between C++ string objects and character arrays
as necessary. (There is also a separate C++ API for MySQL, but it is more complex,
and we do not discuss it here.)

A database program runs continuously, waiting for requests from other pro-
grams. When you write your own program that interacts with the database, your
program needs to establish a connection to the database. The connection is the route
for the database commands that your program sends and the answers that the data-
base sends back.

To connect to a MySQL database, first call mysql_init to obtain an object that
encapsulates the connection. You get a pointer that you need to save.

MYSQL* connection = mysql_init();

Next, call the mysql_real_connect function. You supply eight arguments:

• A pointer to an initialized connection object
• Three strings with the host name, database user name, and password, or NULL to

use the defaults

26.4 Database Programming in C++

26.4.1 Connecting to the MySQL Database

bigc2_ch26_174.fm Page 20 Tuesday, January 6, 2009 11:21 AM

26.4 • Database Programming in C++ 21

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

• The name of the database that you want to use. We recommend that you do all
your work in a database named bigcpp.

• A set of three specialized parameters that you should leave at their defaults (0,
NULL, 0) unless a system administrator tells you otherwise

Typically, the call looks like this:
mysql_real_connect(connection, NULL, NULL, NULL,
 "bigcpp", 0, NULL, 0)

You need to check the return value of this call. If the function returns NULL, there
was a connection error. At this stage, errors are quite common. For example, if the
database is not running, the connection will fail. When there is an error with a data-
base function, call the mysql_error function to retrieve a description of the last error.
For example:

if (mysql_real_connect(...) == NULL)
{
 string error_message = mysql_error(connection);
 ...
}

At the end of the database program, you need to close the connection:
mysql_close(connection);

This is an important step. Not only do you recycle the memory for the connection
object, you also notify the database that it can free the data structures that it set up
to communicate with your program. Be sure to call the mysql_close function at the
end of your program, even if your program terminates because of an error.

Once you are connected to the database, you can issue commands. Assemble the
command in a string object. Use the c_str member function to convert the string
object to a C string. For example,

string new_value = ...;
string query = "INSERT INTO Test VALUES ('" + new_value + "')";
mysql_query(query.c_str());

If a command depends on a number, you need to convert the number to a string, for
example with the int_to_string and double_to_string functions of Chapter 9.

int qty = ...;
string command = "SELECT * FROM Item WHERE Quantity >= "
 + int_to_string(qty);
mysql_query(connection, command.c_str());

Note that you use the mysql_query function both for queries and updates. You will
see in the next section how you obtain the result of a query.

If the command is not a legal SQL command, the mysql_query function returns
an error code. If the command was executed correctly, the return value is 0. Because

26.4.2 Executing SQL Statements

bigc2_ch26_174.fm Page 21 Tuesday, January 6, 2009 11:21 AM

22 CHAPTER 26 • Relational Databases

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

it is common to accidentally create syntax errors in command strings, you should
always check the return value:

if (mysql_query(connection, command.c_str()) != 0)
{
 cout << "Error: " << mysql_error(connection) << "\n";
 ...
}

Do not use the query result if the mysql_query function returns an error code.

After issuing a query, you load the result into a MYSQL_RES object:
MYSQL_RES* result = mysql_store_result(connection);

If the preceding command was a SELECT query, then a result object is allocated and
filled with the selected data. If the preceding command was not a query, the
mysql_store_result function returns a NULL pointer.

The mysql_num_rows and mysql_num_fields functions return the number of rows
and columns of the data set:

int rows = mysql_num_rows(result);
int fields = mysql_num_fields(result);

If rows is zero, then the query yielded no answer. To analyze the query result, you
need to fetch each row. Calling mysql.fetch_row fetches the next row from the result
set. Call that function rows times:

for (int r = 1; r <= rows; r++)
{
 MYSQL_ROW row = mysql_fetch_row(result);
 inspect field data from the current row
}

A MYSQL_ROW is an array of C-style strings, containing the fields of the row. It is best
to convert them immediately to C++ string objects. For example, if i is a number
between 0 and fields - 1, then the ith field can be obtained as

string field = row[i];

If you need the field as a number, use functions such as the string_to_int or
string_to_double of Chapter 9 to convert the strings to numbers. For example, sup-
pose you issued a query of the form

SELECT Unit_Price, ... FROM Product WHERE ...

Then you get the price as
double price = string_to_double(row[0]);

When you are done using a MYSQL_RESULT, you should close it:
mysql_free_result(result);

As you can see, it is quite easy to analyze the result of a database query. Keep in
mind that this mechanism is designed for analyzing query results of moderate size.

26.4.3 Analyzing Query Results

bigc2_ch26_174.fm Page 22 Tuesday, January 6, 2009 11:21 AM

26.4 • Database Programming in C++ 23

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

You should not query the database for huge result sets and then process them in
C++—see Productivity Hint 26.5 on page 24.

The execsql program puts these concepts to use. It simply executes a number of
commands that are stored in a text file. For example, suppose you have a text file
product.sql with SQL commands to populate the Product table.

Then run the program as
execsql < product.sql

The program executes the statements in the text file and prints out the result of the
SELECT query.

You can also use the program as an interactive testing tool. Run
execsql

without any command-line parameters. Type in SQL commands at the command
line. Every time you hit the Enter key, the command is executed.

ch26/execsql.cpp

1 #include <iostream>
2
3 #include <string>
4 #include <mysql.h>
5
6 using namespace std;
7
8 void execute_command(MYSQL* connection, string command)
9 {
10 if (mysql_query(connection, command.c_str()) != 0)
11 {
12 cout << "Error: " << mysql_error(connection) << "\n";
13 return;
14 }
15
16 MYSQL_RES* result = mysql_store_result(connection);
17 if (result == NULL) return;
18
19 int rows = mysql_num_rows(result);
20 int fields = mysql_num_fields(result);
21 for (int r = 1; r <= rows; r++)
22 {
23 MYSQL_ROW row = mysql_fetch_row(result);
24 for (int f = 0; f < fields; f++)
25 {
26 string field(row[f]);
27 if (f > 0) cout << ",";
28 cout << field;
29 }
30 cout << "\n";
31 }
32
33 mysql_free_result(result);
34 }
35

bigc2_ch26_174.fm Page 23 Tuesday, January 6, 2009 11:21 AM

24 CHAPTER 26 • Relational Databases

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

ch26/product.sql

Let the Database Do the Work

You now know how to issue a SQL query from a C++ program and iterate through the
result set. A common error that students make is to iterate through one table at a time to find
a result. For example, suppose you want to find all invoices that contain car vacuums. You
could use the following plan:

1. Issue the query SELECT * FROM Product and iterate through the result set to find the
product code for a car vacuum.

2. Issue the query SELECT * FROM Item and iterate through the result set to find the items
with that product code.

However, this plan is extremely inefficient. Such a program does in very slow motion what a
database has been designed to do quickly. Instead, let the database do all the work. Give the
complete query to the database:

SELECT Item.Invoice_Number
 FROM Product, Item
 WHERE Product.Description = 'Car vacuum'
 AND Product.Product_Code = Item.Product_Code

36 int main()
37 {
38 MYSQL* connection = mysql_init(NULL);
39
40 if (mysql_real_connect(connection, NULL, NULL, NULL,
41 "bigcpp", 0, NULL, 0) == NULL)
42 {
43 cout << "Error: " << mysql_error(connection) << "\n";
44 return 1;
45 }
46
47 string line;
48 bool more = true;
49 while (getline(cin, line))
50 {
51 execute_command(connection, line);
52 }
53
54 mysql_close(connection);
55 return 0;
56 }

1 CREATE TABLE Product (Product_Code CHAR(10), Description CHAR(40),
2 Unit_Price DECIMAL(10, 2))
3 INSERT INTO Product VALUES ('116-064', 'Toaster', 24.95)
4 INSERT INTO Product VALUES ('257-535', 'Hair dryer', 29.95)
5 INSERT INTO Product VALUES ('643-119', 'Car vacuum', 19.99)
6 SELECT * FROM Product

PRODUCT IV ITY HINT 26.5

bigc2_ch26_174.fm Page 24 Tuesday, January 6, 2009 11:21 AM

26.5 • Case Study: Accessing an Invoice Database 25

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Then iterate through the result set to read off all invoice numbers.
Beginners are often afraid of issuing complex SQL queries. However, you are throwing

away a major benefit of a relational database if you don’t take advantage of SQL.

In this section, we will develop two database programs in C++. The first program
queries the invoice database developed in Section 26.1. The user supplies an invoice
number, and the program prints the invoice. The second program can be used to
add a new invoice to the database.

Because we need conversion functions such as string_to_double for both pro-
grams, we placed them in a separate file sutil.cpp and included the header file
sutil.h. These files are included with the companion code for this book.

To print an invoice, we first construct a query to obtain the customer number
and payment for a given invoice number (stored in the string variable invnum).

string query = "SELECT Customer_Number, Payment FROM Invoice "
 "WHERE Invoice_Number = '" + invnum + "'";

Note how a long query string can be broken up over multiple lines. In C++, adja-
cent quoted strings are automatically concatenated. (You cannot use the + operator
to combine two literal strings because + is not defined if both arguments are of type
char*.)

We issue the query. If there are no rows in the result, then there is no matching
invoice. Otherwise, we fetch the first row and extract the customer number and
payment.

MYSQL_ROW row = mysql_fetch_row(result);
string custnum = row[0];
double payment = string_to_double(row[1]);

Note that the query specifically asks for the customer number and payment. We
prefer specific queries to queries of the form SELECT *. If a database is reorganized
and columns are added or rearranged, then the C++ code that analyzes the result of
a SELECT * query may look for fields in the wrong positions.

Once we have the customer number, it is a simple matter to query and print the
customer data. You will find the details in the print_customer function. Printing the
items is a bit more complex because we want to print the product descriptions and
prices, not the product codes. The query links the Item and Product tables:

string query = "SELECT Item.Quantity, Product.Description, "
 "Product.Unit_Price FROM Item, Product WHERE "
 "Item.Invoice_Number = ' "+ invnum
 + "'AND Item.Product_Code = Product.Product_Code";

Finally, we want to print the amount due. We let the database compute the sum of
quantities and unit prices:

26.5 Case Study: Access ing an Invoice Database

bigc2_ch26_174.fm Page 25 Tuesday, January 6, 2009 11:21 AM

26 CHAPTER 26 • Relational Databases

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

string query = "SELECT SUM(Item.Quantity * Product.Unit_Price) "
 "FROM Item, Product WHERE Item.Invoice_Number = '"
 + invnum + "' AND Item.Product_Code = Product.Product_Code";

The result is a table with a single row and column. Fetch the field value and convert
it to a floating-point number:

MYSQL_ROW row = mysql_fetch_row(result);
double amount_due = string_to_double(row[0]);

You will find the complete program at the end of this section. As you can see, most
of the program consists of assembling queries, moving data out of result sets, and
checking for database errors.

The second sample program allows users to add new invoices to the database.
The program prompts for the customer number and payment. (Exercise P26.9 sug-
gests a useful enhancement: to search for the customer number if it is not known.)
Then the program needs to assign an invoice number that is different from all other
invoice numbers. We first find the maximum of all invoice numbers by issuing the
query

SELECT MAX(Invoice_Number) FROM Invoice

Then we add 1 to the maximum in order to obtain a new invoice number. We insert
a new row into the database:

string command = "INSERT INTO Item VALUES ('" + invnum +
 "', '" + prodcode + "', " + int_to_string(quantity) + ")";

The remainder of the program is straightforward. The program simply prompts for
product codes and quantities and adds rows to the Items table.

We kept these programs simple so that you can focus on the code that is required
to interact with the database. Exercise P26.10 suggests a more object-oriented
approach in which you convert between C++ classes, such as Invoice and Customer,
and the relational data in the database.

ch26/printinv.cpp

1 #include <iostream>
2 #include <iomanip>
3
4 #include <string>
5 #include <mysql.h>
6
7 #include "sutil.h"
8
9 using namespace std;
10
11 /**
12 Prints a customer with a given customer number.
13 @param connection the database connection
14 @param custnum the customer number
15 */
16 void print_customer(MYSQL* connection, string custnum)
17 {

bigc2_ch26_174.fm Page 26 Tuesday, January 6, 2009 11:21 AM

26.5 • Case Study: Accessing an Invoice Database 27

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

18 string query = "SELECT Name, Address, City, State, Zip "
19 "FROM Customer WHERE Customer_Number = '" + custnum + "'";
20 if (mysql_query(connection, query.c_str()) != 0)
21 {
22 cout << "Error: " << mysql_error(connection) << "\n";
23 return;
24 }
25 MYSQL_RES* result = mysql_store_result(connection);
26 if (result == NULL)
27 {
28 cout << "Error: " << mysql_error(connection) << "\n";
29 return;
30 }
31 int rows = mysql_num_rows(result);
32 if (rows == 0)
33 {
34 cout << "Customer not found.\n";
35 return;
36 }
37
38 MYSQL_ROW row = mysql_fetch_row(result);
39 string name = row[0];
40 string street = row[1];
41 string city = row[2];
42 string state = row[3];
43 string zip = row[4];
44 mysql_free_result(result);
45
46 cout << name << "\n" << street << "\n"
47 << city << ", " << state << " " << zip << "\n";
48 }
49
50 /**
51 Prints all items of an invoice.
52 @param connection the database connection
53 @param invnum the invoice number
54 */
55 void print_items(MYSQL* connection, string invnum)
56 {
57 string query = "SELECT Item.Quantity, Product.Description, "
58 "Product.Unit_Price FROM Item, Product WHERE Item.Invoice_Number ='"
59 + invnum + "'AND Item.Product_Code = Product.Product_Code";
60 if (mysql_query(connection, query.c_str()) != 0)
61 {
62 cout << "Error: " << mysql_error(connection) << "\n";
63 return;
64 }
65 MYSQL_RES* result = mysql_store_result(connection);
66 if (result == NULL)
67 {
68 cout << "Error: " << mysql_error(connection) << "\n";
69 return;
70 }
71 int rows = mysql_num_rows(result);

bigc2_ch26_174.fm Page 27 Tuesday, January 6, 2009 11:21 AM

28 CHAPTER 26 • Relational Databases

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

72
73 const int COLUMN_WIDTH = 30;
74
75 cout <<
76 "\n\nDescription Price Qty Total\n";
77
78 for (int r = 1; r <= rows; r++)
79 {
80 MYSQL_ROW row = mysql_fetch_row(result);
81 int quantity = string_to_int(row[0]);
82 string description = row[1];
83 double price = string_to_double(row[2]);
84
85 cout << description;
86
87 // Pad with spaces to fill column
88
89 int pad = COLUMN_WIDTH - description.length();
90 for (int i = 1; i <= pad; i++)
91 cout << " ";
92
93 cout << price
94 << " " << quantity
95 << " " << price * quantity << "\n";
96 }
97
98 mysql_free_result(result);
99 }
100
101 /**
102 Gets the amount due on all items of an invoice.
103 @param connection the database connection
104 @param invnum the invoice number
105 */
106 double get_amount_due(MYSQL* connection, string invnum)
107 {
108 string query = "SELECT SUM(Item.Quantity * Product.Unit_Price) "
109 "FROM Item, Product WHERE Item.Invoice_Number = '"
110 + invnum + "' AND Item.Product_Code = Product.Product_Code";
111 if (mysql_query(connection, query.c_str()) != 0)
112 {
113 cout << "Error: " << mysql_error(connection) << "\n";
114 return 0;
115 }
116 MYSQL_RES* result = mysql_store_result(connection);
117 if (result == NULL)
118 {
119 cout << "Error: " << mysql_error(connection) << "\n";
120 return 0;
121 }
122 int rows = mysql_num_rows(result);
123 if (rows == 0) return 0;
124 MYSQL_ROW row = mysql_fetch_row(result);
125 double amount_due = string_to_double(row[0]);

bigc2_ch26_174.fm Page 28 Tuesday, January 6, 2009 11:21 AM

26.5 • Case Study: Accessing an Invoice Database 29

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

126 mysql_free_result(result);
127 return amount_due;
128 }
129
130 /**
131 Prints an invoice.
132 @param connection the database connection
133 @param invnum the invoice number
134 */
135 void print_invoice(MYSQL* connection, string invnum)
136 {
137 string query = "SELECT Customer_Number, Payment FROM Invoice "
138 "WHERE Invoice_Number = '" + invnum + "'";
139 if (mysql_query(connection, query.c_str()) != 0)
140 {
141 cout << "Error: " << mysql_error(connection) << "\n";
142 return;
143 }
144 MYSQL_RES* result = mysql_store_result(connection);
145 if (result == NULL)
146 {
147 cout << "Error: " << mysql_error(connection) << "\n";
148 return;
149 }
150 int rows = mysql_num_rows(result);
151 if (rows == 0)
152 {
153 cout << "Invoice not found.\n";
154 return;
155 }
156
157 MYSQL_ROW row = mysql_fetch_row(result);
158 string custnum = row[0];
159 double payment = string_to_double(row[1]);
160 mysql_free_result(result);
161
162 cout << " I N V O I C E\n\n";
163
164 print_customer(connection, custnum);
165 print_items(connection, invnum);
166
167 double amount_due = get_amount_due(connection, invnum);
168
169 cout << "\nAMOUNT DUE: $" << amount_due - payment << "\n";
170 }
171
172 int main()
173 {
174 MYSQL* connection = mysql_init(NULL);
175
176 if (mysql_real_connect(connection, NULL, NULL, NULL,
177 "bigcpp", 0, NULL, 0) == NULL)
178 {
179 cout << "Error: " << mysql_error(connection) << "\n";

bigc2_ch26_174.fm Page 29 Tuesday, January 6, 2009 11:21 AM

30 CHAPTER 26 • Relational Databases

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

ch26/addinv.cpp

180 return 1;
181 }
182
183 cout << "Enter invoice number: ";
184 string invnum;
185
186 getline(cin, invnum);
187 print_invoice(connection, invnum);
188
189 mysql_close(connection);
190 return 0;
191 }

1 #include <iostream>
2 #include <iomanip>
3
4 #include <string>
5 #include <mysql.h>
6
7 #include "sutil.h"
8
9 using namespace std;
10
11 /**
12 Finds a customer with a given customer number.
13 @param connection the database connection
14 @param custnum the customer number
15 @return true if a customer with the given number exists
16 */
17 bool find_customer(MYSQL* connection, string custnum)
18 {
19 string query = "SELECT * FROM Customer WHERE Customer_Number = '"
20 + custnum + "'";
21 if (mysql_query(connection, query.c_str()) != 0)
22 {
23 cout << "Error: " << mysql_error(connection) << "\n";
24 return false;
25 }
26 MYSQL_RES* result = mysql_store_result(connection);
27 if (result == NULL)
28 {
29 cout << "Error: " << mysql_error(connection) << "\n";
30 return false;
31 }
32 bool r = mysql_num_rows(result) > 0;
33 mysql_free_result(result);
34 return r;
35 }
36

bigc2_ch26_174.fm Page 30 Tuesday, January 6, 2009 11:21 AM

26.5 • Case Study: Accessing an Invoice Database 31

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

37 /**
38 Finds a product with a given product code.
39 @param connection the database connection
40 @param prodcode the product code
41 @return true if a product with the given code exists
42 */
43 bool find_product(MYSQL* connection, string prodcode)
44 {
45 string query = "SELECT * FROM Product WHERE Product_Code = '"
46 + prodcode + "'";
47 if (mysql_query(connection, query.c_str()) != 0)
48 {
49 cout << "Error: " << mysql_error(connection) << "\n";
50 return false;
51 }
52 MYSQL_RES* result = mysql_store_result(connection);
53 if (result == NULL)
54 {
55 cout << "Error: " << mysql_error(connection) << "\n";
56 return false;
57 }
58 bool r = mysql_num_rows(result) > 0;
59 mysql_free_result(result);
60 return r;
61 }
62
63 /**
64 Adds an invoice to the database.
65 @param connection the database connection
66 @param custnum the customer number
67 @param payment the payment amount
68 @return the automatically assigned invoice number
69 */
70 string add_invoice(MYSQL* connection, string custnum, double payment)
71 {
72 string query = "SELECT MAX(Invoice_Number) FROM Invoice";
73 if (mysql_query(connection, query.c_str()) != 0)
74 {
75 cout << "Error: " << mysql_error(connection) << "\n";
76 return "";
77 }
78 MYSQL_RES* result = mysql_store_result(connection);
79 if (result == NULL)
80 {
81 cout << "Error: " << mysql_error(connection) << "\n";
82 return "";
83 }
84 int rows = mysql_num_rows(result);
85 if (rows == 0) return "";
86 MYSQL_ROW row = mysql_fetch_row(result);
87 int max = string_to_int(row[0]);
88 mysql_free_result(result);
89

bigc2_ch26_174.fm Page 31 Tuesday, January 6, 2009 11:21 AM

32 CHAPTER 26 • Relational Databases

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

90 string invnum = int_to_string(max + 1);
91 string command = "INSERT INTO Invoice VALUES ('" + invnum + "', '"
92 + custnum + "', " + double_to_string(payment) + ")";
93 if (mysql_query(connection, command.c_str()) != 0)
94 {
95 cout << "Error: " << mysql_error(connection) << "\n";
96 return "";
97 }
98 return invnum;
99 }
100
101 /**
102 Adds an item to the database.
103 @param connection the database connection
104 @param invnum the invoice number
105 @param prodcode the product code
106 @param quantity the quantity
107 */
108 void add_item(MYSQL* connection, string invnum, string prodcode,
109 int quantity)
110 {
111 string command = "INSERT INTO Item VALUES ('" + invnum + "', '"
112 + prodcode + "', " + int_to_string(quantity) + ")";
113 if (mysql_query(connection, command.c_str()) != 0)
114 {
115 cout << "Error: " << mysql_error(connection) << "\n";
116 return;
117 }
118 }
119
120 int main()
121 {
122 MYSQL* connection = mysql_init(NULL);
123
124 if (mysql_real_connect(connection, NULL, NULL, NULL,
125 "bigcpp", 0, NULL, 0) == NULL)
126 {
127 cout << "Error: " << mysql_error(connection) << "\n";
128 return 1;
129 }
130
131 cout << "Enter customer number: ";
132 string custnum;
133 cin >> custnum;
134
135 if (!find_customer(connection, custnum))
136 {
137 cout << "Customer not found.\n";
138 mysql_close(connection);
139 return 0;
140 }
141
142 cout << "Enter payment: ";
143 double payment;
144 cin >> payment;

bigc2_ch26_174.fm Page 32 Tuesday, January 6, 2009 11:21 AM

26.5 • Case Study: Accessing an Invoice Database 33

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Transactions

An important part of database processing is transaction han-
dling. A transaction is a set of database updates that should
either succeed in their entirety or not happen at all. For
example, consider a banking application that transfers money
from one account to another. This operation involves two
steps: reducing the balance of one account and increasing the

balance of another account. No software system is perfect, and there is always the possibility
of an error. The banking application, the database program, or the network connection
between them could exhibit an error right after the first part—then the money would be
withdrawn from the first account but never deposited to the second account. Clearly, this
would be very bad. There are many other similar situations. For example, if you change an
airline reservation, you don’t want to give up your old seat until the new one is confirmed.

What all these situations have in common is that there is a set of database operations that
are grouped together to carry out the transaction. All operations in the group must be car-
ried out together—a partial completion cannot be tolerated. In SQL, you use the COMMIT and

145
146 string invnum = add_invoice(connection, custnum, payment);
147 if (invnum == "")
148 {
149 mysql_close(connection);
150 return 0;
151 }
152
153 bool more = true;
154 while (more)
155 {
156 cout << "Enter product code, - when done: ";
157 string prodcode;
158 cin >> prodcode;
159 if (prodcode == "-") more = false;
160 else
161 {
162 if (find_product(connection, prodcode))
163 {
164 cout << "Enter quantity: ";
165 int quantity;
166 cin >> quantity;
167 add_item(connection, invnum, prodcode, quantity);
168 }
169 else cout << "Product not found.\n";
170 }
171 }
172 cout << "Added invoice " << invnum << "\n";
173 mysql_close(connection);
174 return 0;
175 }

ADVANCED TOPIC 26.1

A transaction is a set of
database updates that
should either succeed in
its entirety or not at all.

bigc2_ch26_174.fm Page 33 Tuesday, January 6, 2009 11:21 AM

34 CHAPTER 26 • Relational Databases

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

ROLLBACK commands to manage transactions. For example, to transfer money from one
account to another, issue the commands

UPDATE Account SET Balance = Balance - 1000
 WHERE Account_Number = '95667-2574'
UPDATE Account SET Balance = Balance + 1000
 WHERE Account_Number = '82041-1196'
COMMIT

The COMMIT command makes the updates permanent. Conversely, the ROLLBACK command
undoes all changes up to the last COMMIT.

You may wonder how a database can undo updates when a transaction is rolled back. The
database actually stores your changes in a set of temporary tables. If you make queries
within a transaction, the information in the temporary tables is merged with the permanent
data for the purpose of computing the query result, giving you the illusion that the updates
have already taken place. When you commit the transaction, the temporary data are made
permanent. When you execute a rollback, the temporary tables are simply discarded.

Another database integrity issue arises from the fact that multiple users may access the
data at the same time. Suppose for example that two users connect to the Invoice database of
the preceding chapter at the same time. Each of them adds an invoice. Each of their programs
queries the maximum of the invoice numbers, getting the same value. Each of them incre-
ments the maximum to get the next invoice number. Now both new invoices have the same
number. You can solve this issue by making the computation of the new invoice number a
part of the transaction, and instructing the database to isolate transactions that belong to dif-
ferent users.

One of the criteria for the reliability of a database is the ACID test. ACID is an acronym
for the following four concepts:
• Atomicity: Either all steps of a transaction are executed or none of them are.
• Consistency: If a value is stored in multiple locations, it is either changed in all of them or

none of them.
• Isolation: Concurrent transactions do not interfere with another.
• Durability: If the system fails and is restarted, all data reverts to the state of the last com-

mitted transaction.
If you take a class in database programming, you will encounter these concepts again in
much greater detail. At this point, we hope that this note made you appreciate that real-
world database programming is quite a bit more complex than issuing a few SQL queries.

1. A relational database stores information in tables. Each table column has a
name and a data type.

2. SQL (Structured Query Language) is a command language for interacting with
a database.

3. Use the SQL commands CREATE TABLE and INSERT INTO to add data to a
database.

CHAPTER SUMMARY

bigc2_ch26_174.fm Page 34 Tuesday, January 6, 2009 11:21 AM

Review Exercises 35

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

4. You should avoid rows with replicated data. Instead, distribute the data over
multiple tables.

5. A primary key is a column (or set of columns) whose value uniquely specifies a
table record.

6. A foreign key is a reference to a primary key in a linked table.

7. Use the SQL SELECT command to query a database.

8. A join is a query that involves multiple tables.

9. The UPDATE and DELETE commands modify the data in a database.

10. You use an application programming interface (API) to access a database from a
C++ program.

11. A transaction is a set of database updates that should either succeed in its
entirety or not at all.

1. Chris J. Date and Hugh Darwen, A Guide to the SQL Standard: A User’s Guide to the
Standard Database Language SQL, Addison-Wesley, 1997.

2. Eric Raymond and Rick Moen, “How to Ask Questions the Smart Way”,
www.catb.org/~esr/faqs/smart-questions.html.

3. Eric Raymond, “The Cathedral and the Bazaar”,
www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/index.html.

Exercise R26.1. Design a set of database tables to store people and cars. A person has
a name, a unique driver’s license number, and an address. Every car has a unique
vehicle identification number, manufacturer, type, and year. Every car has one
owner, but one person can own multiple cars.

Exercise R26.2. Design a set of database tables to store library books and patrons. A
book has an ISBN (International Standard Book Number), an author, and a title.
The library may have multiple copies of each book, each with a different book ID.
A patron has a name, a unique ID, and an address. A book may be checked out by
at most one patron, but one patron can check out multiple books.

Exercise R26.3. Design a set of database tables to store sets of problems in a quiz.
Each quiz has a title and a unique ID. Each problem has a unique ID, a question,
and an answer. Each quiz contains a collection of problems.

FURTHER READING

REVIEW EXERCISES

bigc2_ch26_174.fm Page 35 Tuesday, January 6, 2009 11:21 AM

36 CHAPTER 26 • Relational Databases

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Exercise R26.4. Design a set of database tables to store students, classes, professors,
and classrooms. Each student takes zero or more classes. Each class has one profes-
sor, but a professor can teach multiple classes. Each class has one classroom.

Exercise R26.5. Give SQL commands to create a Book table, with columns for the
ISBN, author, and title, and to insert all textbooks that you are using this semester.

Exercise R26.6. Give SQL commands to create a Car table, with columns for the
vehicle identification number, manufacturer, type, and year of cars, and to insert all
cars that your family members own.

Exercise R26.7. Give a SQL query that lists all products in the Invoice database.

Exercise R26.8. Give a SQL query that lists all customers in California.

Exercise R26.9. Give a SQL query that lists all customers in California or Nevada.

Exercise R26.10. Give a SQL query that lists all customers not in Hawaii.

Exercise R26.11. Give a SQL query that lists all customers who have an unpaid
invoice.

Exercise R26.12. Give a SQL query that lists all products that have been purchased
by a customer in California.

Exercise R26.13. Give a SQL query that lists all items that are part of invoice number
11731.

Exercise R26.14. Give a SQL query that computes the sum of all quantities that are
part of invoice number 11731.

Exercise R26.15. Give a SQL query that computes the total cost.
SUM(Product.Unit_Price * Item.Quantity) of all items in invoice number 11731.

Exercise R26.16. Give a SQL update statement that raises all prices by 10 percent.

Exercise R26.17. Give a SQL statement that deletes all customers in California.

Exercise P26.1. Write a C++ program that creates a Car table with fields for the car
manufacturer, type, model year, and fuel efficiency rating. Insert several cars. Print
out the average fuel efficiency. Use CREATE TABLE, INSERT, and SELECT AVG SQL com-
mands.

Exercise P26.2. Improve the execsql program and make the columns of the output
line up. Hint: Read the description of the mysql_fetch_lengths function in the
MySQL manual.

Exercise P26.3. Reimplement the employee data program of Section 9.6 using a SQL
database.

PROGRAMMING EXERCISES

bigc2_ch26_174.fm Page 36 Tuesday, January 6, 2009 11:21 AM

Programming Exercises 37

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Exercise P26.4. Write a C++ program that uses the database tables from the Invoice
database. Produce a report that lists all customers, their invoices, the amounts paid,
and the unpaid balances.

Exercise P26.5. Write a C++ program that uses a library database of books and
patron data, as described in Exercise R26.2. Patrons should be able to check out and
return books. Supply commands to print the books that a patron has checked out
and to find out who has checked out a particular book. You may create and popu-
late Patron and Book tables before running the program.

Exercise P26.6. Write a C++ program that creates a grade book for a class. You may
create and populate a Student table and other tables that you need before running
the program. The program should be able to display all grades for a given student. It
should allow the instructor to add a new grade (such as “Homework 4: 100”) or
modify an existing grade.

Exercise P26.7. Write a program that assigns seats on an airplane as described in
Exercise P22.7. Keep the passenger and seating information in a database.

Exercise P26.8. Write a program that keeps an appointment calendar in a database.
Follow the description of Exercise P22.6.

Exercise P26.9. Enhance the program for adding an invoice so that a user can search
the database for customers and products instead of just entering the customer num-
ber and product code. The user should be allowed to enter a part of the customer
name or product description. Display all matching records and allow the user to
select one of them.

Exercise P26.10. Reimplement the program that prints an invoice so that it instead
constructs an object of type Invoice, using the classes of Section 22.7. Then invoke
the print function of the Invoice object.

bigc2_ch26_174.fm Page 37 Tuesday, January 6, 2009 11:21 AM

