

Chapter

25

Big C++, Second Edition

, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Graphical User
Interfaces

•

To learn about event-driven programming

•

To learn how to use an application framework

•

To implement menus and buttons and their associated actions

•

To understand the concept of layout management for
graphical user interface components

•

To understand window repainting

•

To be able to implement simple applications with
graphical user interfaces

CHAPTER GOALS

Y

ou know how

 to implement console programs that read input from

cin

 and send

output to

cout

. However, these programs are hardly typical of today’s applications.

Modern applications have a user interface with menus, buttons, scroll bars, and

other elements. Those programs are often called graphical user interface (GUI)

applications. Many programmers pronounce GUI as “gooey”.

There is an essential difference between a console application and a GUI

application. A console application is in complete control of the user input. The

program asks the user questions in an order that is convenient for processing the

input. The user must supply the responses in exactly the same order. In contrast, the

user of a GUI application can click on buttons, pull down menus, and type text in

bigc2_ch25_174.fm Page 1 Tuesday, January 6, 2009 11:25 AM

2

CHAPTER

25

•

Graphical User Interfaces

C

HAPTER

C

ONTENTS

any order. The user is in charge of providing input, and the program must adapt to

the user. For that reason, GUI applications are much more difficult to program than

the console applications you have seen so far. In this chapter, you will learn how to

create programs with a graphical user interface.

Modern operating systems provide libraries for GUI programming.
However, those libraries are typically complex and hard to use. Most
programmers use a toolkit that provides an object-oriented abstrac-
tion layer over the low-level graphical services. By far the most com-
monly used C++ GUI toolkit is MFC (Microsoft Foundation
Classes). MFC is used to write Microsoft Windows programs, and it
is a part of the Microsoft Visual C++ compiler.

However, in this chapter, we will use a different toolkit, called
wxWidgets. The wxWidgets toolkit is conceptually very similar to MFC, but it has
a number of advantages for our purposes.

• wxWidgets is freely available.
• wxWidgets runs on several platforms, not just Microsoft Windows. In particular,

it runs on Linux and the Macintosh OS.
• wxWidgets works with a large number of compilers.

25.1 The wxWidgets Toolk i t

GUIs can be programmed
through low-level libraries
specific to an operating
system, or through
higher-level application
frameworks.

25.1 The wxWidgets Toolkit 2

25.2 Frames 3

P

RODUCTIVITY

 H

INT

25.1: Learning About a

New Toolkit

6

P

RODUCTIVITY

 H

INT

25.2: Becoming Familiar with a

Complex Tool

7

25.3 Adding a Text Control to
the Frame 8

25.4 Menus 10

25.5 Event Handling 12

25.6 Layout Management 15

25.7 Painting 19

25.8 Mouse Events 24

25.9 Dialog Boxes 28

A

DVANCED

 T

OPIC

25.1: Custom Dialog Boxes

30

25.10 Case Study: A GUI for the
Clock Game 31

R

ANDOM

 F

ACT

25.1: Visual Programming

41

bigc2_ch25_174.fm Page 2 Tuesday, January 6, 2009 11:25 AM

25.2

•

Frames

3

Big C++, Second Edition

, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

• wxWidgets is more transparent to the beginning programmer. MFC is tightly
integrated with the Visual Studio environment, and it hides quite a bit of magic
behind wizards and builder tools.

• wxWidgets is structurally very similar to MFC. Thus, the skills that you learn in
this chapter transfer immediately to MFC and other GUI toolkits.

You can download the wxWidgets software from

www.wxWid-

gets.org

. The web site for this book contains detailed instructions on
how to compile wxWidgets programs on a number of platforms.

The following sections contain a step-by-step guide to user
interface programming, beginning with a very simple program that

displays an empty window and ending up with a GUI implementation of the clock
game from Chapter 22. Here are the steps:

1.

Create an empty frame window—your first GUI program.

2.

Add a text control that can be used to display or enter text.

3.

Add menus to the top of the frame window.

4.

Add event handling code that is executed when the user selects a menu item.

5.

Lay out buttons and other user interface controls.

6.

Paint geometric shapes inside a window.

7.

Handle mouse input.

8.

Use dialog boxes to obtain user input.

9.

Put it all together with the clock game.

To get started with wxWidgets, you will write a very simple program
that simply puts up a

frame

, a window with the typical decorations
that the windowing system provides. The decorations depend on the
windowing system—Figures 1 through Figure 3 show the same frame
under Linux, Macintosh OS X, and Microsoft Windows. If you look

carefully, you can see that the icons for common window operations, such as mini-
mizing and closing the window, are different. These differences are not important
for GUI programming, so you shouldn’t worry if the figures shown here look
slightly different from your programs.

The wxWidgets framework
is suitable for GUI
programming with various
platforms and compilers.

25.2 Frames

A frame is a window with
the decorations provided
by the windowing system.

F igure 1

A Frame in Linux

bigc2_ch25_174.fm Page 3 Tuesday, January 6, 2009 11:25 AM

4

CHAPTER

25

•

Graphical User Interfaces

Big C++, Second Edition

, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

The program listing at the end of this section shows the program that displays a
blank frame (see page 6). As you can see, the program is fairly simple. Let’s walk
through its features.

To use the wxWidgets toolkit in your program, you need to
include the header file

wx/wx.h

. You then define a class that contains
details about the workings of your application. This class must be
derived from the class

wxApp

 that the wxWidgets toolkit provides.

class BasicApp : public wxApp
{
public:
 virtual bool OnInit();
private:
 wxFrame* frame;
};

Here you specify that your application is identical to the default application defined
by

wxApp

, except that your application has a frame, and that you want to override
the

OnInit

 function.

F igure 2

The Same Frame in Macintosh OS X

Your application class
should be derived from
the wxApp class.

F igure 3

The Same Frame in Windows

bigc2_ch25_174.fm Page 4 Tuesday, January 6, 2009 11:25 AM

25.2

•

Frames

5

Big C++, Second Edition

, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

In the

OnInit

 function, you construct and show the frame and return

true

 to
indicate that the initialization was successful.

bool BasicApp::OnInit()
{
 frame = new wxFrame(NULL, -1, "My First GUI Program");
 frame->Show(true);
 return true;
}

Note the window title

"My First GUI Program"

 in the

wxFrame

 constructor. The other
constructor parameters specify that the window has no parent window and a
default window ID.

The names of the wxWidgets framework functions (such as

OnInit

 and

Show

) start
with an uppercase letter. That differs from the convention in the standard C++
library, but it is the convention used in MFC. You need to be careful about capitali-
zation when overriding or calling wxWidgets functions.

Finally, note that the program listing contains the lines

DECLARE_APP(BasicApp)
IMPLEMENT_APP(BasicApp)

These are two preprocessor macros, defined in the

wx/wx.h

 header file. These mac-
ros carry out some magic that the framework needs to make an application out of
the

BasicApp

 class. If you distribute the code for an application class into separate
header and implementation files, then you need to place the

DECLARE_APP

 macro into
the header (

.h

) file and the

IMPLEMENT_APP

 macro into the implementation (

.cpp

) file.
Our

BasicApp

 class inherits a large number of functions from the

wxApp

 class. One
of those functions will, at the appropriate time, call the

OnInit

 function. When the
user closes the frame, another function of the

wxApp

 class will be called to take care
of necessary cleanup. All of this is entirely transparent to the programmer.

The wxWidgets toolkit supplies several base classes (such as

wxApp

)
from which programmers derive classes to specify the behavior of
their application. Such a toolkit is called an

application framework

.
An application framework contains classes that perform a fair
amount of complex work, such as interfacing with the operating sys-
tem and the window environment. However, application program-
mers need not know about these technical details. They must simply
supply their derived classes, according to the rules of the framework.

One of the rules of the wxWidgets framework is that you must initialize the top
window of an application in the

OnInit

 function. It is usually quite difficult for a
programmer who learns a new framework to know what exactly is required to
build an application. See Productivity Hint 25.1 on page 6 for some tips.

Compiling a wxWidgets program is not as simple as compiling a console pro-
gram, and the instructions differ quite a bit, depending on your compiler and plat-
form. The web site for this book has quick-start instructions for several popular
compilers and platforms. For more detailed information, turn to the wxWidgets
documentation. You should set aside some time to install the toolkit and compile
this simple program—see Productivity Hint 25.2 on page 7.

You use inheritance to
describe the differences
between an application
framework’s generic
classes and the
functionality required by
your application.

bigc2_ch25_174.fm Page 5 Tuesday, January 6, 2009 11:25 AM

6

CHAPTER

25

•

Graphical User Interfaces

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Of course, this program isn’t terribly exciting—it just shows an empty frame.
You will see in the following sections how to add menus, buttons, and text fields,
and how to display graphical images in the frame.

ch25/basic.cpp

Learning About a New Toolkit

When you are faced with learning a new framework, you want to look for the following
information:
• A tutorial that gives you step-by-step instructions for building simple applications. This

chapter is such a tutorial.
• Sample applications that show techniques used in more ambitious programs. The wxWid-

gets distribution contains a number of sample applications.
• Documentation that describes the details of the various classes and functions. For exam-

ple, you can look up the meaning of the parameters of the wxFrame constructor in the
wxWidgets documentation.

The rules for using a framework are necessarily somewhat arbitrary. It is not necessary or
possible to completely understand the details of every function call in the routine code that is

1 #include <wx/wx.h>
2
3 /**
4 A basic application that shows an empty frame.
5 */
6 class BasicApp : public wxApp
7 {
8 public:
9 /**
10 Constructs and shows the frame.
11 @return true
12 */
13 virtual bool OnInit();
14 private:
15 wxFrame* frame;
16 };
17
18 DECLARE_APP(BasicApp)
19
20 IMPLEMENT_APP(BasicApp)
21
22 bool BasicApp::OnInit()
23 {
24 frame = new wxFrame(NULL, -1, "My First GUI Program");
25 frame->Show(true);
26 return true;
27 }

PRODUCT IV ITY HINT 25.1

bigc2_ch25_174.fm Page 6 Tuesday, January 6, 2009 11:25 AM

25.2 • Frames 7

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

needed for initialization and other mundane tasks. Framework programmers engage in a fair
amount of “copy and paste” from tutorials and samples. You should do the same when you
work with wxWidgets. Just start with an application that is similar to the one that you want
to create, and modify it.

Becoming Familiar with a Complex Tool

When you first use a complex tool, such as the wxWidgets framework, you will likely face
quite a few difficulties when trying to compile your first program. Because you don’t yet
know the “rules of the game”, you are likely to make lots of mistakes and it may appear as if
success will never come. This is a particularly frustrating experience, and many beginners
give up in disgust. Here are a few tips.
• Set aside plenty of time. This is the most important tip of all. Learning a new tool is time-

consuming for beginners and professionals alike. Trying to do it in a hurry adds a tremen-
dous amount of stress.

• Expect mistakes. You will make plenty of mistakes before you hit upon the right pathway.
If you hope for instant success, it is very easy to become frustrated and demoralized.

• Don’t think you are stupid. Even professional programmers find it difficult and frustrat-
ing to learn a new environment.

• Start with an easy task. Find an extremely simple program, preferably one that you are
absolutely certain is correct. Get it to compile and run.

• Read the error messages. With a complex tool, lots of things can go wrong. Just saying “it
didn’t work” will get you nowhere. Of course, the error messages may be confusing. Be
on the lookout for clues and for red herrings, just like a detective.

• Keep a log. You will likely try several approaches, spread out over hours or days, and
observe more details than you can remember. Open your text editor, start a new file, and
keep track of the commands that you tried. Paste in all error messages that you got.
Include links to promising parts of the documentation.

• Browse the documentation. Most programs come with “readme” or installation instruc-
tions that contain tips for quick start and troubleshooting. Find them and look at them. It
is usually pointless to try to understand everything, but knowing what’s where can be
very helpful when you get stuck.

• Try something else. It is extremely common for beginners to give up because they got
stuck with their initial approach. You’ll be amazed how often a breakthrough comes from
trying some slight variation, no matter how improbable. Of course, the variation won’t
lead to instant success, but watching how the error messages change can give you invalu-
able clues.

• Work with a friend. It is much easier to tolerate errors and come up with creative
approaches when working with someone else.

• Ask someone who knows. The Internet has lots of useful discussion groups where people
help each other. However, nobody likes to spend time helping a lazy person, so you have

PRODUCT IV ITY HINT 25.2

bigc2_ch25_174.fm Page 7 Tuesday, January 6, 2009 11:25 AM

8 CHAPTER 25 • Graphical User Interfaces

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

to do your own research first. Read through other people’s problems and solutions, and
formulate your question so that it is clear that you tried your best.

The frame of the preceding example was completely empty. In this
section, you will see how to make the frame more interesting. Since
you want a more interesting frame than the basic wxFrame, you use

inheritance and define your own frame class. As you can see from Figure 4, the
frame of this sample program contains a text area into which users can type any
text.

Here is the definition of your derived frame class:
class TextFrame : public wxFrame
{
public:
 TextFrame();
private:
 wxTextCtrl* text;
};

The TextFrame constructor initializes the base class and the text control:
TextFrame::TextFrame()
 : wxFrame(NULL, -1, "TextFrame")
{
 text = new wxTextCtrl(this, -1, "Type some text here!",
 wxDefaultPosition, wxDefaultSize, wxTE_MULTILINE);
}

The first construction parameter of the wxTextCtrl class denotes that the parent of
the text control is this frame. The text control moves wherever its parent moves.
(Recall that the frame has no parent—it is a top-level window.) As with the wxFrame
constructor, -1 denotes a default window ID. The third construction parameter is
the initial contents of the text control. The next two parameters specify a default
size and position, and the final parameter turns on the “multiline” style, which
allows the text control to hold multiple lines of text.

25.3 Adding a Text Contro l to the Frame

Use a wxTextCtrl for text
input and output.

Figure 4 A Frame with a Text Control

bigc2_ch25_174.fm Page 8 Tuesday, January 6, 2009 11:25 AM

25.3 • Adding a Text Control to the Frame 9

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Now you need to make a slight change to the application class. This time, you
want it to show a TextFrame, not a wxFrame.

class TextApp : public wxApp
{
public:
 virtual bool OnInit();
private:
 TextFrame* frame;
};

bool TextApp::OnInit()
{
 frame = new TextFrame();
 frame->Show(true);
 return true;
}

This application uses inheritance in two places, to customize the application and to
customize a frame (see Figure 5). Here is the complete program.

ch25/text.cpp

Figure 5 The Classes of the Text Program

wxFrame

TextApp TextFrame

wxApp

wxTextCtrl

1 #include <wx/wx.h>
2
3 /**
4 A frame that contains a text control.
5 */
6 class TextFrame : public wxFrame
7 {
8 public:
9 /**
10 Constructs the text control.
11 */
12 TextFrame();
13 private:
14 wxTextCtrl* text;

bigc2_ch25_174.fm Page 9 Tuesday, January 6, 2009 11:25 AM

10 CHAPTER 25 • Graphical User Interfaces

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

In this step, you will add a menu to your sample application (see Figure 6).

Figure 6 An Application with a Menu

15 };
16
17 /**
18 An application that shows a frame with a text control.
19 */
20 class TextApp : public wxApp
21 {
22 public:
23 /**
24 Constructs and shows the frame.
25 @return true
26 */
27 virtual bool OnInit();
28 private:
29 TextFrame* frame;
30 };
31
32 DECLARE_APP(TextApp)
33
34 IMPLEMENT_APP(TextApp)
35
36 TextFrame::TextFrame()
37 : wxFrame(NULL, -1, "TextFrame")
38 {
39 text = new wxTextCtrl(this, -1, "Type some text here!",
40 wxDefaultPosition, wxDefaultSize, wxTE_MULTILINE);
41 }
42
43 bool TextApp::OnInit()
44 {
45 frame = new TextFrame();
46 frame->Show(true);
47 return true;
48 }

25.4 Menus

bigc2_ch25_174.fm Page 10 Tuesday, January 6, 2009 11:25 AM

25.4 • Menus 11

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

If you look carefully at Figure 6, you will see that the frame now has a menu bar.
The menu bar contains the names of the top-level menus. In this case, there is a sin-
gle top-level menu named “Say”. That menu contains two menu items, “Hello” and
“Goodbye”.

Each menu item must have an integer ID number. The ID numbers are used to
match up menu items with their actions—you will see the details in the next section.
It doesn’t matter what the numbers are, as long as the numbers for different actions
are distinct. It is customary to give the constants names that start with ID_.

const int ID_SAY_HELLO = 1000;
const int ID_SAY_GOODBYE = 1001;

Now construct a menu and append the two menu items to it.
wxMenu* menu = new wxMenu();
menu->Append(ID_SAY_HELLO, "Hello");
menu->Append(ID_SAY_GOODBYE, "Goodbye");

Finally, construct a menu bar object, set it as the menu bar of the frame, and append
the menu:

wxMenuBar* menu_bar = new wxMenuBar();
SetMenuBar(menu_bar);
menu_bar->Append(menu, "Say");

No further changes to the program are required. Here is the complete program list-
ing. Compile the program and verify that the menu works!

ch25/menu.cpp

1 #include <wx/wx.h>
2
3 const int ID_SAY_HELLO = 1000;
4 const int ID_SAY_GOODBYE = 1001;
5
6 /**
7 A frame with a simple menu and a text control.
8 */
9 class MenuFrame : public wxFrame
10 {
11 public:
12 /**
13 Constructs the menu and text control.
14 */
15 MenuFrame();
16 private:
17 wxTextCtrl* text;
18 };
19
20 /**
21 An application with a frame that has a menu and text control.
22 */
23 class MenuApp : public wxApp
24 {

bigc2_ch25_174.fm Page 11 Tuesday, January 6, 2009 11:25 AM

12 CHAPTER 25 • Graphical User Interfaces

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

In the preceding section, you saw how to attach a menu bar with
menus to a frame. However, when you run the program and select a
menu item, nothing happens. Now you will attach actions to the
menu items.

Define a function for each action. It is customary to give these
functions names that begin with On, such as OnSayHello. Here is the

function for the “Hello” menu option. It appends a greeting to the text control.
void EventFrame::OnSayHello(wxCommandEvent& event)
{

25 public:
26 /**
27 Constructs and shows the frame.
28 @return true
29 */
30 virtual bool OnInit();
31 private:
32 MenuFrame* frame;
33 };
34
35 DECLARE_APP(MenuApp)
36
37 IMPLEMENT_APP(MenuApp)
38
39 MenuFrame::MenuFrame()
40 : wxFrame(NULL, -1, "MenuFrame")
41 {
42 text = new wxTextCtrl(this, -1, "",
43 wxDefaultPosition, wxDefaultSize, wxTE_MULTILINE);
44
45 // Initialize menu
46 wxMenu* menu = new wxMenu();
47 menu->Append(ID_SAY_HELLO, "Hello");
48 menu->Append(ID_SAY_GOODBYE, "Goodbye");
49
50 // Add menu to menu bar
51 wxMenuBar* menu_bar = new wxMenuBar();
52 SetMenuBar(menu_bar);
53 menu_bar->Append(menu, "Say");
54 }
55
56 bool MenuApp::OnInit()
57 {
58 frame = new MenuFrame();
59 frame->Show(true);
60 return true;
61 }

25.5 Event Handl ing

GUI programs are event-
driven. Event handlers
are functions that are
called when events occur.

bigc2_ch25_174.fm Page 12 Tuesday, January 6, 2009 11:25 AM

25.5 • Event Handling 13

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

 text->AppendText("Hello, World!\n");
}

Whenever the program user selects the menu option, you want this
function to run. In order to do that, you need to build an event table.
Here is an example of an event table. It routes menu events with an
ID of ID_SAY_HELLO to the OnSayHello function.

BEGIN_EVENT_TABLE(EventFrame, wxFrame)
 EVT_MENU(ID_SAY_HELLO, EventFrame::OnSayHello)
END_EVENT_TABLE()

These entries are again macros, somewhat similar to the IMPLEMENT_APP macro that
causes the application to start by constructing a particular application object. The
details of capturing user interface events differ among platforms. These macros
automatically produce the correct code to capture the events and call the designated
functions when the events occur. An event table has the format

BEGIN_EVENT_TABLE(ClassName, BaseClassName)
 EVT_TYPE(parameters, function)
 ...
END_EVENT_TABLE()

There are several different event types; you will encounter a couple
of them in this chapter. The MENU event type requires a menu ID as a
parameter. Other event types may require different information. The
final parameter of the event macro is the name of the function that
should be called when the event occurs.

The event handler functions have parameters that describe the triggering event.
For example, as you have seen, the handler for the “Hello” menu item has a param-
eter of type wxCommandEvent. That particular handler function has no interest in the
event description, but you must nevertheless declare the handler function with the
appropriate event type. Otherwise, you will get a bewildering error message when
the event macro generates code that doesn’t match the rules of the framework.

You need to know which class handles a particular event. Menu events are han-
dled by the frame that contains the menu bar. Later you will see that button events
are handled by the window that contains the button.

Finally, you need to insert another macro into the definition of each class that has
an event table. For example,

class EventFrame : public wxFrame
{
 ...
private:
 wxTextCtrl* text;
 DECLARE_EVENT_TABLE()
};

That macro generates the necessary data fields and function declarations for the
event table.

Following is the code for the complete program. Select the “Hello” and “Good-
bye” menu items and observe how they append text to the text control.

In wxWidgets, event tables
map events to functions.

You use different table
entries for each event type
(such as menu, button, or
mouse events).

bigc2_ch25_174.fm Page 13 Tuesday, January 6, 2009 11:25 AM

14 CHAPTER 25 • Graphical User Interfaces

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

ch25/event.cpp

1 #include <wx/wx.h>
2
3 const int ID_SAY_HELLO = 1000;
4 const int ID_SAY_GOODBYE = 1001;
5
6 /**
7 A frame with a simple menu that adds greetings to a
8 text control.
9 */
10 class EventFrame : public wxFrame
11 {
12 public:
13 /**
14 Constructs the menu and text control.
15 */
16 EventFrame();
17 /**
18 Adds a “Hello, World!” message to the text control.
19 @param event the event descriptor
20 */
21 void OnSayHello(wxCommandEvent& event);
22 /**
23 Adds a “Goodbye, World!” message to the text control.
24 @param event the event descriptor
25 */
26 void OnSayGoodbye(wxCommandEvent& event);
27 private:
28 wxTextCtrl* text;
29 DECLARE_EVENT_TABLE()
30 };
31
32 /**
33 An application to demonstrate the handling of menu events.
34 */
35 class EventApp : public wxApp
36 {
37 public:
38 /**
39 Constructs and shows the frame.
40 @return true
41 */
42 virtual bool OnInit();
43 private:
44 EventFrame* frame;
45 };
46
47 DECLARE_APP(EventApp)
48
49 IMPLEMENT_APP(EventApp)
50
51 BEGIN_EVENT_TABLE(EventFrame, wxFrame)
52 EVT_MENU(ID_SAY_HELLO, EventFrame::OnSayHello)
53 EVT_MENU(ID_SAY_GOODBYE, EventFrame::OnSayGoodbye)

bigc2_ch25_174.fm Page 14 Tuesday, January 6, 2009 11:25 AM

25.6 • Layout Management 15

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

The next sample program is similar to the preceding one, except that you use but-
tons instead of menus to add greetings to a text control (see Figure 7).

Figure 7
An Application with Two Buttons

54 END_EVENT_TABLE()
55
56 EventFrame::EventFrame()
57 : wxFrame(NULL, -1, "EventFrame")
58 {
59 text = new wxTextCtrl(this, -1, "",
60 wxDefaultPosition, wxDefaultSize, wxTE_MULTILINE);
61
62 // Initialize menu
63 wxMenu* menu = new wxMenu();
64 menu->Append(ID_SAY_HELLO, "Hello");
65 menu->Append(ID_SAY_GOODBYE, "Goodbye");
66
67 // Add menu to menu bar
68 wxMenuBar* menuBar = new wxMenuBar();
69 SetMenuBar(menuBar);
70 menuBar->Append(menu, "Say");
71 }
72
73 void EventFrame::OnSayHello(wxCommandEvent& event)
74 {
75 text->AppendText("Hello, World!\n");
76 }
77
78 void EventFrame::OnSayGoodbye(wxCommandEvent& event)
79 {
80 text->AppendText("Goodbye, World!\n");
81 }
82
83 bool EventApp::OnInit()
84 {
85 frame = new EventFrame();
86 frame->Show(true);
87 return true;
88 }

25.6 Layout Management

bigc2_ch25_174.fm Page 15 Tuesday, January 6, 2009 11:25 AM

16 CHAPTER 25 • Graphical User Interfaces

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Conceptually, buttons are very similar to menu items. When the user presses a
button, a function is called that carries out the button action. To associate the but-
ton with its action, you use an event table. Each button has an ID, and the event
table matches the ID with a function.

When you construct a button, you specify the parent window, the button ID,
and the button label:

wxButton* hello_button = new wxButton(this,
 ID_SAY_HELLO, "Say Hello");

In the event table of the parent window, you use the EVT_BUTTON macro to specify
the event handler function.

BEGIN_EVENT_TABLE(ButtonFrame, wxFrame)
 EVT_BUTTON(ID_SAY_HELLO, ButtonFrame::OnSayHello)
END_EVENT_TABLE()

The event handler has the same form as a menu event handler.
void ButtonFrame::OnSayHello(wxCommandEvent& event)
{
 text->AppendText("Hello, World!\n");
}

That’s all you need to do to activate a button. There is just one additional prob-
lem—you need to make sure the buttons are placed correctly inside the frame. It
turns out that placing buttons is more complex than arranging menus. Menus, after
all, have a simple layout, on top of the frame. Buttons, on the other hand, can be
located anywhere inside a frame.

Some user interface toolkits supply a graphical layout tool to
define the placement of buttons, text controls, and other user inter-
face elements in a frame. Such a tool makes it simple to design a user
interface with a few “drag and drop” operations. However, the result-
ing design tends to be fragile. If the sizes of the components change,
then the components no longer line up, and someone has to run the
tool again to fix the layout. Why would the component sizes change?

There are two common reasons. First, if an application is translated to another lan-
guage, text strings can change dramatically in length and may no longer fit. For
example, a button that holds “Goodbye” may be too small to hold the German
equivalent “Auf Wiedersehen”. Furthermore, if an application is ported to another
windowing system, the sizes of buttons, scroll bars, and other elements is likely to
change.

If you only write applications for a single language and a single platform, then a
“drag and drop” tool is a good solution. But for more robust layouts, you want to
describe the logic behind the placement of the user interface elements. Consider for
example the layout of Figure 7. We have a text control that expands to fill the entire
frame, except for a horizontal row of buttons on the bottom. Those buttons don’t
expand. The row of buttons is centered horizontally.

When placing user
interface elements in a
window, you need to
specify the layout of the
components.

bigc2_ch25_174.fm Page 16 Tuesday, January 6, 2009 11:25 AM

25.6 • Layout Management 17

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

In wxWidgets, you use objects of the wxSizer class or one of its
derived classes to specify the layout of user interface elements. One
subclass is wxBoxSizer. It defines a horizontal or vertical arrangement.
For example, here is how you line up the buttons horizontally:

wxBoxSizer* button_sizer = new wxBoxSizer(wxHORIZONTAL);
button_sizer->Add(hello_button);
button_sizer->Add(goodbye_button);

You use a second sizer to place the text control on top of the button row.
wxBoxSizer* frame_sizer = new wxBoxSizer(wxVERTICAL);
frame_sizer->Add(text, 1, wxGROW);
frame_sizer->Add(button_sizer, 0, wxALIGN_CENTER);

The second parameter of the Add member function is a value that tells the sizer by
how much to grow the component vertically. A value of 0 does not grow the com-
ponent—the button row stays at its natural size. You can use different non-zero
weights to indicate which components should grow fastest. For example, if you
specified a value of 2 for the text control and 1 for the button bar, then the text con-
trol would grow twice as fast. If you have only one expanding component, simply
give it a weight of 1.

The third parameter of the Add member function describes the horizontal growth
behavior. We want the text control to grow to take up all horizontal space. But the
button bar shouldn’t grow—it is kept at its normal size and centered.

Finally, turn on auto layout and tell the frame which sizer to use. Then the frame
consults the sizer when it is first shown, and whenever the user resizes it.

SetAutoLayout(true);
SetSizer(frame_sizer);

Here is the complete program. Run the program and resize the frame. Observe how
the sizers grow the text control and keep the button bar centered.

ch25/button.cpp

The wxWidgets framework
uses sizers to specify the
sizing rules so that
programs can be ported to
different languages and
windowing environments.

1 #include <wx/wx.h>
2
3 const int ID_SAY_HELLO = 1000;
4 const int ID_SAY_GOODBYE = 1001;
5
6 /**
7 A frame with buttons that add greetings to a
8 text control.
9 */
10 class ButtonFrame : public wxFrame
11 {
12 public:
13 /**
14 Constructs and lays out the text control and buttons.
15 */
16 ButtonFrame();
17

bigc2_ch25_174.fm Page 17 Tuesday, January 6, 2009 11:25 AM

18 CHAPTER 25 • Graphical User Interfaces

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

18 /**
19 Adds a “Hello, World!” message to the text control.
20 @param event the event descriptor
21 */
22 void OnSayHello(wxCommandEvent& event);
23
24 /**
25 Adds a “Goodbye, World!” message to the text control.
26 @param event the event descriptor
27 */
28 void OnSayGoodbye(wxCommandEvent& event);
29 private:
30 wxTextCtrl* text;
31 DECLARE_EVENT_TABLE()
32 };
33
34 /**
35 An application to demonstrate button layout.
36 */
37 class ButtonApp : public wxApp
38 {
39 public:
40 /**
41 Constructs and shows the frame.
42 @return true
43 */
44 virtual bool OnInit();
45 private:
46 ButtonFrame* frame;
47 };
48
49 DECLARE_APP(ButtonApp)
50
51 IMPLEMENT_APP(ButtonApp)
52
53 BEGIN_EVENT_TABLE(ButtonFrame, wxFrame)
54 EVT_BUTTON(ID_SAY_HELLO, ButtonFrame::OnSayHello)
55 EVT_BUTTON(ID_SAY_GOODBYE, ButtonFrame::OnSayGoodbye)
56 END_EVENT_TABLE()
57
58 ButtonFrame::ButtonFrame()
59 : wxFrame(NULL, -1, "ButtonFrame")
60 {
61 text = new wxTextCtrl(this, -1, "",
62 wxDefaultPosition, wxDefaultSize, wxTE_MULTILINE);
63
64 wxButton* hello_button = new wxButton(this,
65 ID_SAY_HELLO, "Say Hello");
66
67 wxButton* goodbye_button = new wxButton(this,
68 ID_SAY_GOODBYE, "Say Goodbye");
69
70 wxBoxSizer* button_sizer = new wxBoxSizer(wxHORIZONTAL);
71 button_sizer->Add(hello_button);
72 button_sizer->Add(goodbye_button);

bigc2_ch25_174.fm Page 18 Tuesday, January 6, 2009 11:25 AM

25.7 • Painting 19

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

In this section, you will see how to draw images in a GUI program.
Drawing images in a windowing environment is not quite as straight-
forward as you may think. Consider the program in Figure 8. The
program draws an ellipse that fills the entire window. When does the
program need to draw the ellipse? Of course, the drawing must hap-
pen when the program’s frame is first displayed. But that may not be

enough. If the user resizes the frame, or minimizes and restores it, or if another
frame pops up over it and then vanishes again, the program must redraw the image.
The program has no idea when these events will happen. But the window manager
knows when the contents of a window have been corrupted. Whenever that happens,

73
74 wxBoxSizer* frame_sizer = new wxBoxSizer(wxVERTICAL);
75 frame_sizer->Add(text, 1, wxGROW);
76 frame_sizer->Add(button_sizer, 0, wxALIGN_CENTER);
77
78 SetAutoLayout(true);
79 SetSizer(frame_sizer);
80 }
81
82 void ButtonFrame::OnSayHello(wxCommandEvent& event)
83 {
84 text->AppendText(“Hello, World!\n”);
85 }
86
87 void ButtonFrame::OnSayGoodbye(wxCommandEvent& event)
88 {
89 text->AppendText("Goodbye, World!\n");
90 }
91
92 bool ButtonApp::OnInit()
93 {
94 frame = new ButtonFrame();
95 frame->Show(true);
96 return true;
97 }

25.7 Paint ing

A GUI program receives
paint events whenever the
contents of a window
need to be painted.

Figure 8 A Program That Draws a Graphical Shape

bigc2_ch25_174.fm Page 19 Tuesday, January 6, 2009 11:25 AM

20 CHAPTER 25 • Graphical User Interfaces

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

the program receives a paint event. Thus, the program needs to draw the image not
just once, but every time a paint event occurs.

Therefore, you need to place all drawing instructions into a function, and set that
function as the target of paint events. Place an entry such as the following into the
event table:

EVT_PAINT(EllipseWindow::OnPaint)

Here is the paint function. It obtains a device context, an object that represents the
surface of the window. By default, the device context fills the inside of a geometric
shape with a fill color. For compatibility with this book’s drawing library, we turn
that feature off by setting the brush to a transparent brush.

The device context class has drawing functions such as DrawLine, DrawEllipse,
and DrawText. Use the DrawEllipse function to draw an ellipse that fills the entire
window.

void EllipseWindow::OnPaint(wxPaintEvent& event)
{
 wxPaintDC dc(this);
 dc.SetBrush(*wxTRANSPARENT_BRUSH);
 wxSize size = GetSize();
 int x = 0;
 int y = 0;
 int width = size.GetWidth();
 int height = size.GetHeight();
 dc.DrawEllipse(x, y, width, height);
}

The DrawEllipse function is a bit odd. You don’t specify the center of the ellipse but
the top left corner of the bounding box (see Figure 9).

The device context coordinates are in pixels. The (0, 0) point is the top left corner,
and the y-coordinates increase towards the bottom of the screen (see Figure 10).

Figure 9 Specifying the Bounding Box of an Ellipse

(x,y)

H
ei

gh
t

Width

bigc2_ch25_174.fm Page 20 Tuesday, January 6, 2009 11:25 AM

25.7 • Painting 21

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

That is a common source of confusion, because it is the opposite of the convention in
mathematics (and this book’s graphics library).

The device context drawing operations are somewhat less object-oriented than
those of this book’s graphics library. There are no classes for lines, ellipses, and so
on. Instead, you call functions whenever you want to draw a shape. On the other
hand, the device context supports many advanced features. You can easily change
brush colors, pen sizes, and text fonts. If you are interested in creating fancy draw-
ings, check out the wxWidgets documentation for more information.

Finally, note that the OnPaint function does not draw directly on the application’s
frame but on a separate window of type EllipseWindow, derived from wxWindow. We
take the attitude that an “ellipse window” is a user interface element, just like a text
control or button, and that it deserves its own class. In Section 25.10, you will see a
more realistic example where the paint function draws a clock in its own ClockWin-
dow. That clock window is then placed inside a frame, along with text controls and
buttons.

When constructing the window class, we need to tell the base class that this win-
dow needs to be fully repainted when the window is resized. By default, only newly
exposed parts of the window are repainted, but that does not work if the contents of
the window depends on the window size. Full repainting is achieved with the fol-
lowing call to the base class constructor:

EllipseWindow::EllipseWindow(wxWindow* parent)
 : wxWindow(parent, wxID_ANY, wxDefaultPosition, wxDefaultSize,
 wxFULL_REPAINT_ON_RESIZE)
{
}

Figure 11 shows the classes of the sample program. Note that we have three derived
classes—this program specializes the application, frame, and window classes from
the application framework.

Figure 10 The Device Context Coordinate System

0

height − 1

width − 10

bigc2_ch25_174.fm Page 21 Tuesday, January 6, 2009 11:25 AM

22 CHAPTER 25 • Graphical User Interfaces

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Here is the complete program. Run the program and resize the frame. Note how
the ellipse is automatically repainted to fit the new frame size.

ch25/paint.cpp

Figure 11 The Classes of the Paint Program

wxFrame wxWindow

PaintApp PaintFrame

wxApp

EllipseWindow

1 #include <wx/wx.h>
2
3 /**
4 A window onto which an ellipse is painted.
5 */
6 class EllipseWindow : public wxWindow
7 {
8 public:
9 /**
10 Initializes the base class.
11 @param parent the parent window
12 */
13 EllipseWindow(wxWindow* parent);
14
15 /**
16 Draws an ellipse on the window.
17 @param event the event descriptor
18 */
19 void OnPaint(wxPaintEvent& event);
20 private:
21 DECLARE_EVENT_TABLE()
22 };
23
24 /**
25 A frame with a window that shows an ellipse.
26 */
27 class PaintFrame : public wxFrame
28 {

bigc2_ch25_174.fm Page 22 Tuesday, January 6, 2009 11:25 AM

25.7 • Painting 23

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

29 public:
30 /**
31 Constructs the window.
32 */
33 PaintFrame();
34 private:
35 EllipseWindow* window;
36 };
37
38 /**
39 An application to demonstrate painting.
40 */
41 class PaintApp : public wxApp
42 {
43 public:
44 /**
45 Constructs and shows the frame.
46 @return true
47 */
48 virtual bool OnInit();
49 private:
50 PaintFrame* frame;
51 };
52
53 DECLARE_APP(PaintApp)
54
55 IMPLEMENT_APP(PaintApp)
56
57 BEGIN_EVENT_TABLE(EllipseWindow, wxWindow)
58 EVT_PAINT(EllipseWindow::OnPaint)
59 END_EVENT_TABLE()
60
61 EllipseWindow::EllipseWindow(wxWindow* parent)
62 : wxWindow(parent, wxID_ANY, wxDefaultPosition, wxDefaultSize,
63 wxFULL_REPAINT_ON_RESIZE)
64 {
65 }
66
67 void EllipseWindow::OnPaint(wxPaintEvent& event)
68 {
69 wxPaintDC dc(this);
70 dc.SetBrush(*wxTRANSPARENT_BRUSH);
71 wxSize size = GetSize();
72 int x = 0;
73 int y = 0;
74 int width = size.GetWidth();
75 int height = size.GetHeight();
76 dc.DrawEllipse(x, y, width, height);
77 }
78
79 PaintFrame::PaintFrame()
80 : wxFrame(NULL, -1, "PaintFrame")
81 {

bigc2_ch25_174.fm Page 23 Tuesday, January 6, 2009 11:25 AM

24 CHAPTER 25 • Graphical User Interfaces

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

To handle mouse input in a graphical window, you install a function that is notified
when mouse events occur. There are several kinds of mouse events:

• motion
• dragging (moving while depressing a mouse button)
• mouse button going down
• mouse button going up
• clicking (mouse button going down and up within a short period)
• double-clicking

You install the mouse handler with the EVT_MOUSE_EVENTS macro. In the notification
function, you can query the wxMouseEvent parameter about the event type. For
example, the function ButtonDown returns true for a “button down” event. You can
also obtain the mouse position by calling the GetX/GetY functions of the wxMou-
seEvent class.

 In our sample program, we allow a user to specify a triangle by clicking on the
three corners. The principal difficulty in this program lies in the fact that the mouse
handler is called separately for each mouse press. With each press, we record the
mouse position. Then we need to carry out some drawing to give visual feedback to
the user.

It is not a good idea to do the drawing in the mouse handler. All drawing should
happen in the paint handler so that the logic for drawing is contained in a single
location. Depending on the number of corners that have already been specified, the
paint handler draws

• a small circle for the first mouse click
• a line after the first two mouse clicks
• a triangle after three mouse clicks

See Figure 12.
The mouse handler stores the corner points and then calls the Refresh function.

That function generates a paint event, which eventually causes the paint function to

82 window = new EllipseWindow(this);
83 }
84
85 bool PaintApp::OnInit()
86 {
87 frame = new PaintFrame();
88 frame->Show(true);
89 return true;
90 }

25.8 Mouse Events

bigc2_ch25_174.fm Page 24 Tuesday, January 6, 2009 11:25 AM

25.8 • Mouse Events 25

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

be called. You should never call the paint function directly but always call Refresh
to request repainting.

void TriangleWindow::OnMouseEvent(wxMouseEvent& event)
{
 if (event.ButtonDown() && corners < 3)
 {
 x[corners] = event.GetX();
 y[corners] = event.GetY();
 corners++;
 Refresh();
 }
}

Here is the paint function:
void TriangleWindow::OnPaint(wxPaintEvent& event)
{
 const int RADIUS = 2;
 wxPaintDC dc(this);
 if (corners == 1)
 dc.DrawEllipse(x[0] - RADIUS, y[0] - RADIUS,
 2 * RADIUS, 2 * RADIUS);
 if (corners >= 2)
 dc.DrawLine(x[0], y[0], x[1], y[1]);
 if (corners >= 3)
 {
 dc.DrawLine(x[1], y[1], x[2], y[2]);
 dc.DrawLine(x[2], y[2], x[0], y[0]);
 }
}

This program is very typical for event-driven programming. Each mouse event
causes a small change in the program state, increasing the corners counter and add-
ing values to the x and y arrays. Whenever a paint event occurs, then the paint func-
tion consults that state to carry out the drawing operations. It is immaterial whether
the paint event is the consequence of a mouse event or some other event.

Whenever you design such a program, it is a good idea to “work backwards”
from the paint handler. What are the various kinds of drawings that the paint han-
dler needs to create? What values does it need to have available to create these draw-
ings? Those values need to be a part of the window state. Then ask yourself which
events update those values. The code for updating the values needs to be placed into
mouse handlers, button handlers, or other event handlers.

Figure 12 The Three Phases of the Mouse Program

bigc2_ch25_174.fm Page 25 Tuesday, January 6, 2009 11:25 AM

26 CHAPTER 25 • Graphical User Interfaces

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

ch25/mouse.cpp

1 #include <wx/wx.h>
2
3 /**
4 A window on which the program user can draw
5 a triangle by clicking on the three corners.
6 */
7 class TriangleWindow : public wxWindow
8 {
9 public:
10 /**
11 Initializes the base class.
12 @param parent the parent window
13 */
14 TriangleWindow(wxWindow* parent);
15
16 /**
17 Paints the corners and lines that have already been
18 entered.
19 @param event the event descriptor
20 */
21 void OnPaint(wxPaintEvent& event);
22
23 /**
24 Adds another corner to the triangle.
25 @param event the event descriptor
26 */
27 void OnMouseEvent(wxMouseEvent& event);
28 private:
29 int x[3];
30 int y[3];
31 int corners;
32 DECLARE_EVENT_TABLE()
33 };
34
35 /**
36 A frame with a window that shows a triangle.
37 */
38 class MouseFrame : public wxFrame
39 {
40 public:
41 /**
42 Constructs the window.
43 */
44 MouseFrame();
45 private:
46 TriangleWindow* window;
47 };
48
49 /**
50 An application to demonstrate mouse event handling.
51 */
52 class MouseApp : public wxApp
53 {

bigc2_ch25_174.fm Page 26 Tuesday, January 6, 2009 11:25 AM

25.8 • Mouse Events 27

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

54 public:
55 /**
56 Constructs and shows the frame.
57 @return true
58 */
59 virtual bool OnInit();
60 private:
61 MouseFrame* frame;
62 };
63
64 DECLARE_APP(MouseApp)
65
66 IMPLEMENT_APP(MouseApp)
67
68 BEGIN_EVENT_TABLE(TriangleWindow, wxWindow)
69 EVT_MOUSE_EVENTS(TriangleWindow::OnMouseEvent)
70 EVT_PAINT(TriangleWindow::OnPaint)
71 END_EVENT_TABLE()
72
73 TriangleWindow::TriangleWindow(wxWindow* parent)
74 : wxWindow(parent, wxID_ANY)
75 {
76 corners = 0;
77 }
78
79 void TriangleWindow::OnMouseEvent(wxMouseEvent& event)
80 {
81 if (event.ButtonDown() && corners < 3)
82 {
83 x[corners] = event.GetX();
84 y[corners] = event.GetY();
85 corners++;
86 Refresh();
87 }
88 }
89
90 void TriangleWindow::OnPaint(wxPaintEvent& event)
91 {
92 const int RADIUS = 2;
93 wxPaintDC dc(this);
94 dc.SetBrush(*wxTRANSPARENT_BRUSH);
95 if (corners == 1)
96 dc.DrawEllipse(x[0] - RADIUS, y[0] - RADIUS,
97 2 * RADIUS, 2 * RADIUS);
98 if (corners >= 2)
99 dc.DrawLine(x[0], y[0], x[1], y[1]);
100 if (corners >= 3)
101 {
102 dc.DrawLine(x[1], y[1], x[2], y[2]);
103 dc.DrawLine(x[2], y[2], x[0], y[0]);
104 }
105 }
106

bigc2_ch25_174.fm Page 27 Tuesday, January 6, 2009 11:25 AM

28 CHAPTER 25 • Graphical User Interfaces

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

When designing a user interface, it is generally preferred to minimize modes. A
mode restricts what a user can do at any given time, or interprets a user input in a
way that depends on the mode. One example of a mode is the overtype mode in a
word processor. In overtype mode, the typed characters replace existing characters
instead of inserting themselves before the cursor. However, experience has shown
that modes burden program users. To anticipate the behavior of the program, the
user must expend some mental effort and keep track of the current mode. Mode
errors are common. For example, if you accidentally activate overtype mode in a
word processor, you delete text and must spend time to correct your error.

Another example of a special program mode is a dialog box that
requires immediate input from the user. The user can do nothing else
except fill in or cancel the dialog box. This too can be burdensome
for the user. Perhaps the user doesn’t want to fill in all the informa-
tion right now. Suppose you fill out a dialog box in the word proces-
sor, and then you remember that you need to make a change to the

document. You can abandon the dialog box, losing the information that you already
typed. Or you can complete the dialog box, and hopefully you then still remember
what changes you wanted to make. Issues such as these can subject users to a certain
amount of stress, and good user interface designers will want to minimize stressful
situations. One alternative is to make a dialog box modeless, allowing users to
switch back and forth between dialog windows and other windows.

Nevertheless, modal dialog boxes are necessary whenever a program simply can-
not proceed without user intervention. They are also very easy to program, so you
see them quite often in many applications, perhaps more often than good user inter-
face design would suggest.

The wxWidgets toolkit makes it very easy to program several kinds of common
dialog boxes. You can display a message for the user as follows:

wxMessageDialog* dialog = new wxMessageDialog(parent, message);
dialog->ShowModal();
dialog->Destroy();

107 MouseFrame::MouseFrame()
108 : wxFrame(NULL, -1, "MouseFrame")
109 {
110 window = new TriangleWindow(this);
111 }
112
113 bool MouseApp::OnInit()
114 {
115 frame = new MouseFrame();
116 frame->Show(true);
117 return true;
118 }

25.9 Dia log Boxes

Modal dialog boxes
interrupt a GUI program
and force the user to fill in
the dialog before going on.

bigc2_ch25_174.fm Page 28 Tuesday, January 6, 2009 11:25 AM

25.9 • Dialog Boxes 29

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Then a dialog box pops up (see Figure 13). The dialog box is displayed until the user
clicks the “OK” button. No other program window receives input until the user
dismisses the dialog box.

The parent parameter is a pointer to the parent window. The dialog box is placed
over its parent window. Often, the code that pops up the dialog box is a member
function of a class derived from wxFrame or wxWindow. Then you pass this as the par-
ent window pointer.

The message parameter is of type wxString, a class that is similar to the standard
string type. You occasionally encounter such library classes that replicate standard
library classes, usually because the library was older than the C++ standard. The
wxString class has a constructor that accepts a C style (char*) string. We recommend
that you use the standard string class for all string computations, then use the c_str
function to convert to a C string, which is then automatically converted to a
wxString. For example,

string message = "Hello, " + name;
dialog = new wxMessageDialog(this, message.c_str());

When you are done with a dialog box, you should destroy it. That function carries
out a “delayed delete”. It waits until all user interface messages to the dialog box
have been processed, and then deletes the memory. (You don’t delete or destroy
frames, windows, buttons, and menus that are a permanent part of the program.)

Another convenient dialog box is the text entry dialog box that asks the user to
supply a single line of text (see Figure 14). For example,

wxTextEntryDialog* dialog = new wxTextEntryDialog(this,
 "What is your name?");
dialog->ShowModal();
string name = dialog->GetValue().c_str();
dialog->Destroy();

The GetValue function returns a wxString. That class has a c_str function to convert
to a C string, which you can immediately convert to a standard string object.

Figure 13
A Message Dialog Box

Figure 14 A Text Entry Dialog Box

bigc2_ch25_174.fm Page 29 Tuesday, January 6, 2009 11:25 AM

30 CHAPTER 25 • Graphical User Interfaces

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Custom Dialog Boxes

If you want to show a custom dialog box, such as the one in Figure 15, you need to derive a
class from the wxDialog class. Supply OK and Cancel buttons with the standard IDs wxID_OK
and wxID_CANCEL. If the dialog is made up of labeled text fields, you can use a wxFlexGrid-
Sizer to lay them out in two columns. Finally, call the Fit function of the dialog sizer to give
the dialog box the exact size needed to lay out the component.

class PlayerInfoDialog : public wxDialog
{
public:
 PlayerInfoDialog(wxWindow* parent);
 string get_name() const;
 int get_level() const;
private:
 wxTextCtrl* name_text;
 wxTextCtrl* level_text;
};

PlayerInfoDialog::PlayerInfoDialog(wxWindow* parent)
 : wxDialog(parent, -1, wxString("Player information"))
{
 name_text = new wxTextCtrl(this, -1);
 level_text = new wxTextCtrl(this, -1);

 wxFlexGridSizer* text_sizer = new wxFlexGridSizer(2);
 text_sizer->Add(new wxStaticText(this, -1, "Name:"));
 text_sizer->Add(name_text);
 text_sizer->Add(new wxStaticText(this, -1, "Level:"));
 text_sizer->Add(level_text);

 wxBoxSizer* button_sizer = new wxBoxSizer(wxHORIZONTAL);
 button_sizer->Add(new wxButton(this, wxID_OK, "OK"));
 button_sizer->Add(new wxButton(this, wxID_CANCEL, "Cancel"));
 wxBoxSizer* dialog_sizer = new wxBoxSizer(wxVERTICAL);
 dialog_sizer->Add(text_sizer, 1, wxGROW);
 dialog_sizer->Add(button_sizer, 0, wxALIGN_CENTER);

 SetAutoLayout(true);
 SetSizer(dialog_sizer);
 dialog_sizer->Fit(this);
}

Figure 15
A Custom Dialog Box

ADVANCED TOPIC 25.1

bigc2_ch25_174.fm Page 30 Tuesday, January 6, 2009 11:25 AM

25.10 • Case Study: A GUI for the Clock Game 31

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Then you call the ShowModal function in the usual way. That function returns wxID_OK if the
user clicked on OK or wxID_CANCEL if the user cancels the dialog box.

PlayerInfoDialog* dialog = new PlayerInfoDialog(this);
if (dialog->ShowModal() == wxID_OK)
{
 player.set_name(dialog->get_name());
 player.set_level(dialog->get_level());
}
dialog->Destroy();

In the final example of this chapter, we will put together a longer program, namely a
wxWidgets version of the clock game in Chapter 22. The program has menus, but-
tons, text fields, dialog boxes, and a paint function. It is a good exercise for you to go
through the program code and identify the various event handlers and their pur-
poses. Figure 17 shows a diagram of all classes in the program.

Because of the event-driven nature of GUI programming, several modifications
had to be made to the program logic. For example, the original program asks the
user for a guess, then asks again if the guess was not correct. In this program, each
guess is communicated to the program in the handler of the “Guess” button. The
program must keep track whether the guess is the first or second guess. A data field
tries has been added for that purpose.

Figure 16 The Clock Game

25.10 Case Study: A G U I for the Clock Game

bigc2_ch25_174.fm Page 31 Tuesday, January 6, 2009 11:25 AM

32 CHAPTER 25 • Graphical User Interfaces

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

The original program queried the user name and level upon startup. The GUI
version uses a different mechanism. The user selects menu options that lead to dia-
log boxes for entering this information. That is actually a better solution—a user
can now change the level at any time during the game.

To simplify compilation, the nonstandard Point and Time classes have been elimi-
nated from this program.

Here is the complete program. As you can see, the GUI programming strategies
in this chapter allow you to produce professional looking applications with a rela-
tively modest amount of programming. That is a tribute to the power of C++,
classes, inheritance, and application frameworks. By using the wxWidgets frame-
work, you inherit a tremendous amount of general purpose functionality, which
leaves you to focus on the tasks that are specific to your application.

ch25/game.cpp

Figure 17 The Classes of the Clock Game

wxFrame wxWindow

GameApp ClockFrame

wxApp

ClockWindow

wxTextCtrl Player Clock

1 #include <wx/wx.h>
2 #include <string>
3 #include <cstdlib>
4 #include <cmath>
5
6 using namespace std;
7
8 const double PI = 3.141592653589793;
9
10 const int ID_GUESS = 1000;
11 const int ID_PLAYER_NAME = 1001;
12 const int ID_PLAYER_LEVEL = 1002;
13

bigc2_ch25_174.fm Page 32 Tuesday, January 6, 2009 11:25 AM

25.10 • Case Study: A GUI for the Clock Game 33

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

14 /**
15 A clock that can draw its face.
16 */
17 class Clock
18 {
19 public:
20 Sets the current time.
21 @param h the hours to set
22 @param m the minutes to set
23 */
24 void set_time(int h, int m);
25
26 /**
27 Sets the size of this clock.
28 @param width the width of the enclosing window
29 @param height the width of the enclosing window
30 */
31 void set_size(int width, int height);
32
33 /**
34 Draws the clock face, with tick marks and hands.
35 @param dc the device context to draw on
36 */
37 void draw(wxDC& dc) const;
38 private:
39 /**
40 Draws a tick mark (hour or minute mark).
41 @param dc the device context to draw on
42 @param angle the angle in minutes (0...59, 0 = top)
43 @param length the length of the tick mark, as a fraction
44 of the radius (between 0.0 and 1.0)
45 */
46 void draw_tick(wxDC& dc, double angle, double length) const;
47
48 /**
49 Draws a hand, starting from the center.
50 @param dc the device context to draw on
51 @param angle the angle in minutes (0...59, 0 = top)
52 @param length the length of the hand, as a fraction
53 of the radius (between 0.0 and 1.0)
54 */
55 void draw_hand(wxDC& dc, double angle, double length) const;
56
57 int hours;
58 int minutes;
59 int centerx;
60 int centery;
61 int radius;
62 };
63
64 /**
65 The player of the clock game.
66 */
67 class Player
68 {

bigc2_ch25_174.fm Page 33 Tuesday, January 6, 2009 11:25 AM

34 CHAPTER 25 • Graphical User Interfaces

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

69 public:
70 /**
71 Constructs a player with name "Player",
72 level 1, and score 0.
73 */
74 Player();
75
76 /**
77 Increments the score. Moves to next level if current
78 level complete
79 */
80 void increment_score();
81
82 /**
83 Gets the current level.
84 @return the level
85 */
86 int get_level() const;
87
88 /**
89 Gets the player’s name.
90 @return the name
91 */
92 string get_name() const;
93
94 /**
95 Sets the player’s level.
96 @param l the level
97 */
98 void set_level(int l);
99
100 /**
101 Sets the player’s name.
102 @param n the name
103 */
104 void set_name(string n);
105 private:
106 string name;
107 int score;
108 int level;
109 };
110
111 /**
112 The window that shows the clock.
113 */
114 class ClockWindow : public wxWindow
115 {
116 public:
117 /**
118 Constructs a clock window.
119 @param parent the parent window
120 */
121 ClockWindow(wxWindow* parent);
122

bigc2_ch25_174.fm Page 34 Tuesday, January 6, 2009 11:25 AM

25.10 • Case Study: A GUI for the Clock Game 35

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

123 /**
124 Sets the time of the clock and repaints it.
125 @param h the hours
126 @param m the minutes
127 */
128 void set_time(int h, int m);
129
130 /**
131 Paints the clock.
132 @param event the event descriptor
133 */
134 void OnPaint(wxPaintEvent& event);
135 private:
136 Clock clock;
137 DECLARE_EVENT_TABLE()
138 };
139
140 /**
141 The frame that contains the clock window and the
142 fields for entering a guess.
143 */
144 class GameFrame : public wxFrame
145 {
146 public:
147 /**
148 Constructs the game frame.
149 */
150 GameFrame();
151
152 /**
153 Starts a new round, with a new clock time.
154 */
155 void new_round();
156
157 /**
158 Processes the player’s guess.
159 @param event the event descriptor
160 */
161 void OnGuess(wxCommandEvent& event);
162
163 /**
164 Prompts the player to enter a name.
165 @param event the event descriptor
166 */
167 void OnPlayerName(wxCommandEvent& event);
168
169 /**
170 Prompts the player to enter a level.
171 @param event the event descriptor
172 */
173 void OnPlayerLevel(wxCommandEvent& event);
174 private:
175 ClockWindow* window;
176 wxTextCtrl* hour_text;

bigc2_ch25_174.fm Page 35 Tuesday, January 6, 2009 11:25 AM

36 CHAPTER 25 • Graphical User Interfaces

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

177 wxTextCtrl* minute_text;
178 Player player;
179 int current_hours;
180 int current_minutes;
181 int tries;
182 DECLARE_EVENT_TABLE()
183 };
184
185 /**
186 The clock game application.
187 */
188 class GameApp : public wxApp
189 {
190 public:
191 /**
192 Constructs and shows the frame.
193 @return true
194 */
195 virtual bool OnInit();
196 private:
197 GameFrame* frame;
198 };
199
200 DECLARE_APP(GameApp)
201
202 IMPLEMENT_APP(GameApp)
203
204 BEGIN_EVENT_TABLE(ClockWindow, wxWindow)
205 EVT_PAINT(ClockWindow::OnPaint)
206 END_EVENT_TABLE()
207
208 BEGIN_EVENT_TABLE(GameFrame, wxFrame)
209 EVT_BUTTON(ID_GUESS, GameFrame::OnGuess)
210 EVT_MENU(ID_PLAYER_NAME, GameFrame::OnPlayerName)
211 EVT_MENU(ID_PLAYER_LEVEL, GameFrame::OnPlayerLevel)
212 END_EVENT_TABLE()
213
214 /**
215 Sets the seed of the random number generator.
216 */
217 void rand_seed()
218 {
219 int seed = static_cast<int>(time(0));
220 srand(seed);
221 }
222
223 /**
224 Returns a random integer in a range.
225 @param a the bottom of the range
226 @param b the top of the range
227 @return a random number x, a <= x and x <= b
228 */
229 int rand_int(int a, int b)
230 {

bigc2_ch25_174.fm Page 36 Tuesday, January 6, 2009 11:25 AM

25.10 • Case Study: A GUI for the Clock Game 37

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

231 return a + rand() % (b - a + 1);
232 }
233
234 void Clock::set_time(int h, int m)
235 {
236 hours = h;
237 minutes = m;
238 }
239
240 void Clock::set_size(int width, int height)
241 {
242 centerx = width / 2;
243 centery = height / 2;
244 if (width < height)
245 radius = width * 0.45;
246 else
247 radius = height * 0.45;
248 }
249
250 void Clock::draw_tick(wxDC& dc, double angle,
251 double length) const
252 {
253 double alpha = -PI / 2 + 6 * angle * PI / 180;
254 dc.DrawLine(
255 centerx + static_cast<int>(
256 cos(alpha) * radius * (1 - length)),
257 centery + static_cast<int>(
258 sin(alpha) * radius * (1 - length)),
259 centerx + static_cast<int>(cos(alpha) * radius),
260 centery + static_cast<int>(sin(alpha) * radius));
261 }
262
263 void Clock::draw_hand(wxDC& dc, double angle,
264 double length) const
265 {
266 double alpha = -PI / 2 + 6 * angle * PI / 180;
267 dc.DrawLine(centerx, centery,
268 centerx + static_cast<int>(cos(alpha) * radius * length),
269 centery + static_cast<int>(sin(alpha) * radius * length));
270 }
271
272 void Clock::draw(wxDC& dc) const
273 {
274 dc.DrawEllipse(centerx - radius, centery - radius,
275 2 * radius, 2 * radius);
276 const double HOUR_TICK_LENGTH = 0.2;
277 const double MINUTE_TICK_LENGTH = 0.1;
278 const double HOUR_HAND_LENGTH = 0.6;
279 const double MINUTE_HAND_LENGTH = 0.75;
280 for (int i = 0; i < 12; i++)
281 {
282 draw_tick(dc, i * 5, HOUR_TICK_LENGTH);
283 int j;
284 for (j = 1; j <= 4; j++)
285 draw_tick(dc, i * 5 + j, MINUTE_TICK_LENGTH);

bigc2_ch25_174.fm Page 37 Tuesday, January 6, 2009 11:25 AM

38 CHAPTER 25 • Graphical User Interfaces

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

286 }
287 draw_hand(dc, minutes, MINUTE_HAND_LENGTH);
288 draw_hand(dc, (hours + minutes / 60.0) * 5, HOUR_HAND_LENGTH);
289 }
290
291 Player::Player()
292 {
293 name = "Player";
294 level = 1;
295 score = 0;
296 }
297
298 void Player::set_level(int l)
299 {
300 level = l;
301 }
302
303 void Player::set_name(string n)
304 {
305 name = n;
306 }
307
308 int Player::get_level() const
309 {
310 return level;
311 }
312
313 string Player::get_name() const
314 {
315 return name;
316 }
317
318 void Player::increment_score()
319 {
320 score++;
321 if (score % 5 == 0 && level < 4)
322 level++;
323 }
324
325 ClockWindow::ClockWindow(wxWindow* parent)
326 : wxWindow(parent, wxID_ANY, wxDefaultPosition, wxDefaultSize,
327 wxFULL_REPAINT_ON_RESIZE)
328 {
329 }
330
331 void ClockWindow::OnPaint(wxPaintEvent& event)
332 {
333 wxPaintDC dc(this);
334 dc.SetBrush(*wxTRANSPARENT_BRUSH);
335
336 wxSize size = GetSize();
337 clock.set_size(size.GetWidth(), size.GetHeight());
338
339 clock.draw(dc);

bigc2_ch25_174.fm Page 38 Tuesday, January 6, 2009 11:25 AM

25.10 • Case Study: A GUI for the Clock Game 39

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

340 }
341
342 void ClockWindow::set_time(int h, int m)
343 {
344 clock.set_time(h, m);
345 Refresh();
346 }
347
348 GameFrame::GameFrame()
349 : wxFrame(NULL, -1, "GameFrame")
350 {
351 // Initialize menu
352 wxMenu* menu = new wxMenu();
353 menu->Append(ID_PLAYER_NAME, "Name");
354 menu->Append(ID_PLAYER_LEVEL, "Level");
355
356 // Add menu to menu bar
357 wxMenuBar* menu_bar = new wxMenuBar();
358 SetMenuBar(menu_bar);
359 menu_bar->Append(menu, "Player");
360
361 window = new ClockWindow(this);
362
363 hour_text = new wxTextCtrl(this, -1);
364 minute_text = new wxTextCtrl(this, -1);
365
366 wxButton* guess_button = new wxButton(this,
367 ID_GUESS, "Guess");
368
369 wxBoxSizer* bottom_sizer = new wxBoxSizer(wxHORIZONTAL);
370 bottom_sizer->Add(new wxStaticText(this, -1, "Hours"));
371 bottom_sizer->Add(hour_text);
372 bottom_sizer->Add(new wxStaticText(this, -1, "Minutes"));
373 bottom_sizer->Add(minute_text);
374 bottom_sizer->Add(guess_button);
375
376 wxBoxSizer* frame_sizer = new wxBoxSizer(wxVERTICAL);
377 frame_sizer->Add(window, 1, wxGROW);
378 frame_sizer->Add(bottom_sizer, 0, wxALIGN_CENTER);
379
380 SetAutoLayout(true);
381 SetSizer(frame_sizer);
382
383 new_round();
384 }
385
386 void GameFrame::OnGuess(wxCommandEvent& event)
387 {
388 tries++;
389 int hours = atoi(hour_text->GetValue().c_str());
390 int minutes = atoi(minute_text->GetValue().c_str());
391 if (hours < 1 || hours > 12)
392 {

bigc2_ch25_174.fm Page 39 Tuesday, January 6, 2009 11:25 AM

40 CHAPTER 25 • Graphical User Interfaces

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

393 wxMessageDialog* dialog = new wxMessageDialog(this,
394 "Hours must be between 1 and 12");
395 dialog->ShowModal();
396 dialog->Destroy();
397 return;
398 }
399 if (minutes < 0 || minutes > 59)
400 {
401 wxMessageDialog* dialog = new wxMessageDialog(this,
402 "Hours must be between 1 and 12");
403 dialog->ShowModal();
404 dialog->Destroy();
405 return;
406 }
407 if (current_hours == hours && current_minutes == minutes)
408 {
409 string text = "Congratulations, " + player.get_name()
410 + "! That is correct.";
411 wxMessageDialog* dialog = new wxMessageDialog(this,
412 text.c_str());
413 dialog->ShowModal();
414 dialog->Destroy();
415 player.increment_score();
416 new_round();
417 }
418 else
419 {
420 string text = "Sorry, " + player.get_name()
421 + "! That is not correct.";
422 wxMessageDialog* dialog = new wxMessageDialog(this,
423 text.c_str());
424 dialog->ShowModal();
425 dialog->Destroy();
426 if (tries == 2) new_round();
427 }
428 }
429
430 void GameFrame::new_round()
431 {
432 tries = 0;
433 int level = player.get_level();
434 if (level == 1) current_minutes = 0;
435 else if (level == 2) current_minutes = 15 * rand_int(0, 3);
436 else if (level == 3) current_minutes = 5 * rand_int(0, 11);
437 else current_minutes = rand_int(0, 59);
438 current_hours = rand_int(1, 12);
439 window->set_time(current_hours, current_minutes);
440 }
441
442 void GameFrame::OnPlayerName(wxCommandEvent& event)
443 {
444 wxTextEntryDialog* dialog = new wxTextEntryDialog(this,
445 "What is your name?");
446 dialog->ShowModal();
447 player.set_name(dialog->GetValue().c_str());

bigc2_ch25_174.fm Page 40 Tuesday, January 6, 2009 11:25 AM

25.10 • Case Study: A GUI for the Clock Game 41

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Visual Programming

Programming as you know it involves typing code into a text editor and then running it. A
programmer must be familiar with a programming language to write even the simplest of
programs. When programming menus or buttons, one must write code to direct the layout
of these user interface elements.

A visual style of programming makes this much easier. When you use a visual program-
ming environment, you use your mouse to specify where buttons, text fields, and other fields
should appear on the screen (see Figure 18). You still need to do some programming. You
need to write code for every event. For example, you can drag a button to its desired loca-
tion, but you still need to specify what should happen when the user clicks on that button.

Visual programming offers several benefits. It is much easier to lay out a screen by drag-
ging buttons and menu items with the mouse than it is to write the layout code. Most visual
programming environments are also very extensible. You can add user interface elements
from third parties, many with sophisticated behavior. For example, a calendar element can
show the current month’s calendar, with buttons to move to the next or previous month. All
of that has been preprogrammed by someone (usually the hard way, using a traditional pro-
gramming language), but you can add a fully working calendar to your program simply by
dragging it off a toolbar and dropping it into your program.

448 dialog->Destroy();
449 }
450
451 void GameFrame::OnPlayerLevel(wxCommandEvent& event)
452 {
453 wxTextEntryDialog* dialog = new wxTextEntryDialog(this,
454 "At what level do you want to play? (1-4)");
455 dialog->ShowModal();
456 int level = atoi(dialog->GetValue().c_str());
457 dialog->Destroy();
458 if (level < 1 || level > 4)
459 {
460 wxMessageDialog* dialog = new wxMessageDialog(this,
461 "The level must be between 1 and 4");
462 dialog->ShowModal();
463 dialog->Destroy();
464 return;
465 }
466 player.set_level(level);
467 }
468
469 bool GameApp::OnInit()
470 {
471 rand_seed();
472 frame = new GameFrame();
473 frame->Show(true);
474 return true;
475 }

RANDOM FACT 25.1

bigc2_ch25_174.fm Page 41 Tuesday, January 6, 2009 11:25 AM

42 CHAPTER 25 • Graphical User Interfaces

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

A prebuilt component, such as a calendar chooser, usually has a large number of proper-
ties that you can simply choose from a table. For example, you can simply check whether
you want the calendar to be weekly or monthly. The provider of the calendar component
had to work hard to include code for both cases, but the developer using the component can
customize the component without any programming.

You should select visual GUI builders with care. Some environments force you to use
mouse clicks even when editing a text file would be much faster. For example, it is nice for a
beginner to drag and drop menu trees, but experienced programmers find it much easier to
modify a text file. A good environment should offer both options. Some environments only
remember your mouse clicks, and not the intentions behind them. Then it can be tedious to
adapt your visual design to other languages or platforms.

A good GUI builder can make building an effective GUI much easier than writing the
equivalent code in C++. These systems are highly recommended for professional user inter-
face programming.

Figure 18 A Visual Programming Environment

bigc2_ch25_174.fm Page 42 Tuesday, January 6, 2009 11:25 AM

Review Exercises 43

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

1. GUIs can be programmed through low-level libraries specific to an operating
system, or through higher-level application frameworks.

2. The wxWidgets framework is suitable for GUI programming with various plat-
forms and compilers.

3. A frame is a window with the decorations provided by the windowing system.

4. Your application class should be derived from the wxApp class.

5. You use inheritance to describe the differences between an application frame-
work’s generic classes and the functionality required by your application.

6. Use a wxTextCtrl for text input and output.

7. GUI programs are event-driven. Event handlers are functions that are called
when events occur.

8. In wxWidgets, event tables map events to functions.

9. You use different table entries for each event type (such as menu, button, or
mouse events).

10. When placing user interface elements in a window, you need to specify the lay-
out of the components.

11. The wxWidgets framework uses sizers to specify the sizing rules so that pro-
grams can be ported to different languages and windowing environments.

12. A GUI program receives paint events whenever the contents of a window need
to be painted.

13. Modal dialog boxes interrupt a GUI program and force the user to fill in the
dialog before going on.

Exercise R25.1. What is the essential difference in control flow between graphical
user interface applications and console applications?

Exercise R25.2. List at least eight user interface elements that you have encountered
in commonly used GUI programs.

Exercise R25.3. What is an application framework?

Exercise R25.4. What is the essential difference between a frame and a window?

Exercise R25.5. When do you form derived classes of wxFrame and when do you form
derived classes of wxWindow?

CHAPTER SUMMARY

REVIEW EXERCISES

bigc2_ch25_174.fm Page 43 Tuesday, January 6, 2009 11:25 AM

44 CHAPTER 25 • Graphical User Interfaces

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Exercise R25.6. Into which class do you place the event table of a menu? Of a but-
ton? Of paint events? Of mouse events?

Exercise R25.7. What happens if you forget to place the DECLARE_APP or IMPLEMENT_APP
macro into your application? Try it out and explain the error message that you get.

Exercise R25.8. What happens if your event table maps an event to a function with
the wrong signature? Try it out and explain the error message that you get.

Exercise R25.9. What is the difference between a single-line and a multi-line text con-
trol? How do you construct each kind?

Exercise R25.10. Explain why you need sizers to lay out buttons but you don’t need
them to lay out menus.

Exercise R25.11. Explain under which circumstances paint events are generated. You
may want to place a print statement into the paint function of a sample program and
find out when it is called.

Exercise R25.12. List the different kinds of mouse events. Find out from the docu-
mentation of the wxMouseEvent class how you can tell them apart.

Exercise R25.13. What is a mode in a program? Give three examples of modes in
commonly used applications.

Exercise R25.14. What is the difference between a modal and a modeless dialog box?

Exercise R25.15. Which wxWidgets objects do you allocate on the stack? Which do
you allocate with new? Which of them do you destroy?

Exercise R25.16. How do you convert between standard strings and wxString
objects? Why are there two separate classes?

Exercise P25.1. Implement a program that shows the growth of a $10,000 investment
that earns interest at 5 percent per year. Supply a menu called “Bank” and a menu
item called “Add Interest”. When the user selects that menu item, add the interest
to the current balance and append a message showing the current balance to a text
control.

Exercise P25.2. Add menu options to change the current balance and interest rate to
Exercise P25.1.

Exercise P25.3. Write a wxWidgets program that displays a square. Initially, the
square is displayed in the center of the window. Supply a menu called “Move” and
four menu items called “Left”, “Right”, “Up”, and “Down” that move the square
by 10 pixels in the indicated direction. Hint: In the event handlers, change the posi-
tion of the square, then call Refresh.

PROGRAMMING EXERCISES

bigc2_ch25_174.fm Page 44 Tuesday, January 6, 2009 11:25 AM

Programming Exercises 45

Big C++, Second Edition, Horstmann and Budd, Copyright © 2009 John Wiley & Sons, Inc. All Rights Reserved.

Exercise P25.4. Implement the same functionality as in Exercise P25.3, except supply
a row of four buttons to move the square.

Exercise P25.5. Write a wxWidgets program that displays the temperature chart of
Section 2.8.2. Since you can’t change the coordinate system of the window, you
must manually transform logical units to pixel units.

Exercise P25.6. Add a menu option to the program in Exercise P25.5 that changes the
temperature value of a given month.

Exercise P25.7. Implement a tic-tac-toe board. Draw the grid lines and process
mouse events. When the user clicks on a field, draw an “x” mark for all even moves
and an “o” mark for all odd moves. You don’t have to check for illegal moves.

Exercise P25.8. Refine the program of Exercise P25.7 so that it checks for illegal
moves, pronounces winners and ties, and resets the game after a win or tie.

Exercise P25.9. Write a program that paints a clock face at the current time. That is,
in the paint handler, get the current time and draw the clock’s hands accordingly.

Exercise P25.10. Consult the wxWidgets documentation to find out about timer
events. Add a timer event handler to the preceding program that refreshes the clock
window once a second, so that it always shows the correct time.

Exercise P25.11. Change the clock game by showing the current level in a text con-
trol. Place a button “Set level” next to the text control so that the user can change
the level at any time.

Exercise P25.12. Write a wxWidgets program that implements a different game, to
teach arithmetic to your younger brother. The program tests addition and subtrac-
tion. In level 1 it tests only addition of numbers less than 10 whose sum is less than
10. In level 2 it tests addition of arbitrary one-digit numbers. In level 3 it tests sub-
traction of one-digit numbers with a nonnegative difference. Generate random
problems and get the player input. The player gets up to two tries per problem.
Advance from one level to the next when the player has achieved a score of five
points.

bigc2_ch25_174.fm Page 45 Tuesday, January 6, 2009 11:25 AM

