
UI Test Automation on Android 

By 
 

Karthik Vakati 



UI Test Automation on Android 

No Quiz Today  



UI Test Automation on Android 

Two ways to test your application’s User Interface 
 
Manual Testing 
 

o Run tests manually and verify that the 
 app is behaving as expected 

 
o Time-consuming, tedious, and error-
 prone  



UI Test Automation on Android 

Two ways to test your application’s User Interface 
 
Automated Testing 
 

o Automate the UI testing with a software 

testing framework  



UI Test Automation on Android 

The Android SDK provides the following tools: 
 

o  uiautomatorviewer - A GUI tool to scan and 

analyze the UI components of an Android 

application. 

o  uiautomator - A Java library containing APIs to 

create customized functional UI tests, and an 

execution engine to automate and run the tests. 

 



UI Test Automation on Android 

Workflow for the uiautomator testing framework 
 

1. Prepare to test 

2. Create automated tests to simulate specific user 

interactions on your application 

3. Compile your test cases into a JAR file and install it on 

your test device along with your app 

4. Run the tests and view the test results 

5. Correct any bugs or defects discovered in testing 



UI Test Automation on Android 

1. Prepare to Test 
 

1. Load the application to a device 

2. Identify the application’s UI components 

3. Ensure that the application is accessible 

4. Configure your development environment 



UI Test Automation on Android 

2. Create Tests using uiautomator framework 
 

 Built on top of Junit framework 

 Create test cases that extend the UiAutomatorTestCase 

 Since UiAutomatorTestCase extends junit framework’s 

TestCase, you can make use of Junit Assert class   

 Capture and manipulate UI components using classes 

like UiDevice, UiSelector, UiObject, UiCollection.....  



UI Test Automation on Android 

2. Create Tests using uiautomator framework (cont…) 
 

 UiDevice 

o Device that contains the target app 

o The first thing your test case should do is access the 

device 

 UiSelector 

o Represents a search criteria to query and get a 

handle on specific elements in the currently 

displayed UI 



UI Test Automation on Android 

2. Create Tests using uiautomator framework (cont…) 
 

 UiObject 

o Represents a UI element  

o Use UiSelector to get a handle on a specific UI 

element and assign it to UiObject 

 UiCollection  

o Represents a collection of items 

o Use UiSelector to search for a UI element that is a 

container or wrapper of other child UI elements and 

assign it to UiCollection 



UI Test Automation on Android 

3. Building and Deploying Your Tests 
 

1. Create the required build configuration files 

<android-sdk>/tools/android create uitest-project -n <name> -t 1 

-p <path> 

2. From the commandline, set the ANDROID_HOME var 

o In Windows 

  set ANDROID_HOME=<path_to_your_sdk> 

o In Linux 

   export ANDROID_HOME=<path_to_your_sdk> 



UI Test Automation on Android 

3. Building and Deploying Your Tests (cont…) 
 

3. Go to the project directory where your build.xml file is 

located and build your test JAR 

  ant  build 

4. Deploy your generated test JAR file to the test device 

  adb  push <path_to_output_jar> /data/local/tmp/ 



UI Test Automation on Android 

4. Running uiautomator Tests 
 

adb  shell  uiautomator  runtest  <name_of _jar>  -c  

<name_of_package_that_contains_test_cases> 



UI Test Automation on Android 

Today’s Lab 
 

Run automated tests on Homework 2 



UI Test Automation on Android 

Copy my Homework 2 solutions 

Connect a device or start the emulator 

Locate the hw02.apk file under hw02/bin/ directory 

Run adb install <path_to_hw02/bin/hw02.apk> in command         

prompt to install Homework 2 onto the device 

Bring the app Homework 2 onto the home screen 



UI Test Automation on Android 

1. To identify the UI components, open Homework 2 on the 

emulator. 

2. In the terminal, navigate to the folder <android-sdk>/tools/ 

and run $ uiautomatorviewer 

3.  From the GUI of the uiautomatorviewer tool, click on 

Device Screenshot to analyze the components of the 

current screen  

4.  Note down the fields text or content-desc for the UI 

elements  that you want to test. 

5.  Select one of the Questions. 

6.  Perform Step 2, 3 and 4 again 



UI Test Automation on Android 



UI Test Automation on Android 

 Create a Java Project  in Eclipse and name it hw02Test 

 From the Java Build Path  

o  Click Add Library > JUnit then select JUnit3 to add JUnit support. 

o  Click Add External JARs... and navigate to the SDK directory. Under 

the platforms directory, select the latest SDK version and add both 

the uiautomator.jar and android.jar files. 

 Create the package edu.sjsu.cs185c.hw02.test and the class 

SimpleTestCase under it. 



UI Test Automation on Android 

 Now it’s time to create the tests. 

 Open the file SimpleTestCase.java and copy the code. 

 Now it’s time to deploy and run the tests. 

 In the terminal run $ android list targets 

 Note the value of the field id for android level 17 or higher 



UI Test Automation on Android 

Create the required build configuration files to build the 

output JAR. In the terminal, run   

$ <android-sdk>/tools/android create uitest-project -n <name> -t 

<id> -p <path> 

where <name> represents the name of the test project, <path> 

represents the path for the test project and <id> represents the id 

value you captured earlier. 

 export ANDROID_HOME=<path_to_your_sdk> under linux 



UI Test Automation on Android 

Go to the project directory where your build.xml file is 

located and build your test JAR.   

$ ant build 

 Deploy your generated test JAR file to the test device by 

using the adb push command 

$ adb push <path_to_output_jar> /data/local/tmp/ 

  Run the test using the adb shell command 

$ adb shell uiautomator runtest hw02Test.jar -c  

edu.sjsu.cs185c.hw02.test 



UI Test Automation on Android 

 Now let’s add more code to our test class. 

 Open the file SimpleTestCase.java and add the following 

code.  

  UiObject smartphone= new UiObject(new UiSelector() 

  .text("What was the best-selling smartphone OS in 2006?")); 

  if (smartphone.exists()) {     smartphone.click();     sleep(5000);   }     

  assertTrue(new UiObject(new UiSelector() 

  .text("What was the best-selling smartphone OS in 2006?")).exists()); 

  UiObject option1 = new UiObject(new UiSelector().text(“Android”)); 

  if (option1.exists()) {  option1.clickAndWaitForNewWindow(); } 

 Deploy and run the test again. 


